Skip to main content Accessibility help




There is an interesting logical/semantic issue with some mathematical languages and theories. In the language of (pure) complex analysis, the two square roots of −1 are indiscernible: anything true of one of them is true of the other. So how does the singular term ‘i’ manage to pick out a unique object? This is perhaps the most prominent example of the phenomenon, but there are some others. The issue is related to matters concerning the use of definite descriptions and singular pronouns, such as donkey anaphora and the problem of indistinguishable participants. Taking a cue from some work in linguistics and the philosophy of language, I suggest that i functions like a parameter in natural deduction systems. This may require some rethinking of the role of singular terms, at least in mathematical languages.


Corresponding author



Hide All
Awodey, S. (2004). An answer to Hellman’s question: Does category theory provide a framework for mathematical structuralism? Philosophia Mathematica (III), 12, 5464.
Bach, K. (1999). The semantics-pragmatics distinction: What it is and why it matters. In Turner, K., editor. The Semantics-Pragmatics Interface from Different Points of View. Oxford, UK: Elsevier, pp. 6584.
Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74, 4773.
Black, M. (1952). The identity of indiscernibles. Mind, 61, 153164.
Brandom, R. (1996). The significance of complex numbers for Frege’s philosophy of mathematics. Proceedings of the Aristotelian Society, 96, 293315.
Breckenridge, Wylie, and Ofra, Magidor (2012), “Arbitrary reference”, Philosophical Studies, forthcoming.
Burgess, J. (1999). Review of Philosophy of Mathematics: Structure and Ontology. Notre Dame Journal of Formal Logic, 40, 283291.
Button, T. (2006). Realist structuralism’s identity crisis: A hybrid solution. Analysis, 66, 216222.
Chihara, C. (1990). Constructibility and Mathematical Existence. Oxford, UK: Oxford University Press.
Elbourne, P. (2003). Indistinguishable participants. In Dekker, P., and van Rooig, R., editors. Proceedings of the fourteenth Amsterdam Colloquium. Amsterdam, The Netherlands: ILLC/Department of Philosophy, University of Amsterdam, pp. 105110.
Elbourne, P. (2005). Situations and Individuals. Cambridge, MA: MIT Press.
Fine, K. (1985). Reasoning with Arbitrary Objects. New York: Basil Blackwell.
Frege, G. (1884). Die Grundlagen der Arithmetik, Breslau, Koebner; The Foundations of Arithmetic. Translated by Austin, J., second edition. New York: Harper, 1960.
Frege, G. (1976). Wissenschaftlicher Briefwechsel. Edited by Gabriel, G., Hermes, H., Kambartel, F., and Thiel, C.. Hamburg, Germany: Felix Meiner.
Frege, G. (1980). Philosophical and Mathematical Correspondence. Oxford, UK: Basil Blackwell.
Geach, P. T. (1950). Russell’s theory of descriptions. Analysis, 10, 8488.
Heim, I. (1990). E-type pronouns and donkey anaphora. Linguistics and Philosophy, 13, 137177.
Hellman, G. (1989). Mathematics without Numbers. Oxford, UK: Oxford University Press.
Hellman, G. (2001). Three varieties of mathematical structuralism. Philosophia Mathematica (III), 9, 184211.
Hellman, G. (2003). Does category theory provide a framework for mathematical structuralism? Philosophia Mathematica (III), 11, 129157.
Hilbert, D. (1899). Grundlagen der Geometrie, Leipzig, Teubner; Foundations of Geometry. Translated by Townsend, E.. La Salle, IL: Open Court, 1959.
Hodges, W. (1997). A Shorter Model Theory. Cambridge, UK: Cambridge University Press.
Keränen, J. (2001). The identity problem for realist structuralism. Philosophia Mathematica (III), 3, 308330.
Keränen, J. (2006). The identity problem for realist structuralism II: A reply to Shapiro. In MacBride (2006a), 146163.
Ketland, J. (2006). Structuralism and the identity of indiscernibles. Analysis, 66, 303315.
Kraut, R. (1980). Indiscernibility and ontology. Synthese, 44, 113135.
Ladyman, J. (2005). Mathematical structuralism and the identity of indiscernibles. Analysis, 65, 218221.
Leitgeb, H. (2007). Struktur und Symbol. In Schmidinger, H. M., and Sedmak, C., editors. Der Mensch: Ein “animal Symbolicum”?, Topologien Des Menschlichen 4. Darmstadt, Germany: Wissenschaftliche Buchgesellschaft, pp. 131147.
Leitgeb, H., & Ladyman, J. (2008). Criteria of identity and structuralist ontology. Philosophia Mathematica (III), 16, 388396.
Lewis, D. (1979). Scorekeeping in a language game. Journal of Philosophical Logic, 8, 339359.
Linnebo, Ø. (2008). Structuralism and the notion of dependence. Philosophical Quarterly, 58, 5979.
MacBride, F. (2005). Structuralism reconsidered. In Shapiro, S. editor. Oxford Handbook of Philosophy of Mathematics and Logic. Oxford, UK: Oxford University Press, pp. 563589.
MacBride, F. (editor) (2006a), Identity and modality. Oxford, U.K.: Oxford University Press.
MacBride, F. (2006b). What constitutes the numerical diversity of mathematical objects? Analysis, 66, 6369.
Martino, E. (2001). Arbitrary reference in mathematical reasoning. Topoi, 20, 6577.
Pettigrew, R. (2008). ‘ℕ’ and ‘i’: In favour of an aristotelian interpretation of mathematics. Philosophia Mathematica (III), 16, 310322.
Priest, G. (2003). Meinongianism and the philosophy of mathematics. Philosophia Mathematica (III), 11, 315.
Priest, G. (2005). Towards Non-being. Oxford, UK: Oxford University Press.
Quine, W. V. O. (1982). Methods of Logic. Cambridge, MA: Harvard University Press.
Quine, W. V. O. (1986). Philosophy of Logic. second edition. Englewood Cliffs, NJ: Prentice-Hall.
Roberts, C. (2002). Demonstratives as definites. In van Deemter, K., and Kibble, R., editors. Information Sharing: Reference and Presupposition in Language Generation and Interpretation. Stanford, California: CSLI Press, pp. 89196.
Roberts, C. (2003). Uniqueness in definite noun phrases. Linguistics and Philosophy, 26, 287350.
Roberts, C. (2004). Pronouns as definites. In Bezuidenhout, A., and Reimer, M., editors. Descriptions and Beyond. Oxford, UK: Oxford University Press, pp. 503543.
Russell, B. (1905). On denoting. Mind, 14, 479498.
Russell, B. (1957). Mr. Strawson on referring. Mind, 66, 385389.
Shapiro, S. (1997). Philosophy of Mathematics: Structure and Ontology. New York: Oxford University Press.
Shapiro, S. (2005). Categories, structures, and the Frege-Hilbert controversy: The status of meta-metamathematics. Philosophia Mathematica (III), 13, 6177.
Shapiro, S. (2006a). Structure and identity. In MacBride (2006a), 109145.
Shapiro, S. (2006b). The governance of identity. In MacBride (2006a), 164173.
Shapiro, S. (2006c). Vagueness in Context. Oxford: Oxford University Press.
Shapiro, S. (2008). Identity, indiscernibility, and ante rem structuralism: The tale of i and −i. Philosophia Mathematica (III), 16, 285309.
Simons, P. (1987). Frege’s theory of real numbers. History and Philosophy of Logic, 8, 2544.
Smullyan, R. (1995). First-Order Logic. New York: Dover.
Sorenson, R. (2001). Vagueness and Contradiction. Oxford, UK: Oxford University Press.
Stalnaker, R. C. (1999). Context and Content: Essays on Intentionality in Speech and Thought. Oxford, UK: Oxford University Press.
Strawson, P. F. (1950). On referring. Mind, 59, 320344.
Tennant, N. (1983). A defence of arbitrary objects, Proceedings of the Aristotelian Society, Supplementary Volume, 57, 7989.
van Dalen, D. (2004). Logic and Structure, fourth edition. New York: Springer.
Williamson, T. (1994). Vagueness. London: Routledge Publishing Company.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Review of Symbolic Logic
  • ISSN: 1755-0203
  • EISSN: 1755-0211
  • URL: /core/journals/review-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed