Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6f8dk Total loading time: 0.372 Render date: 2021-02-26T23:17:30.921Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A THREE-VALUED QUANTIFIED ARGUMENT CALCULUS: DOMAIN-FREE MODEL-THEORY, COMPLETENESS, AND EMBEDDING OF FOL

Published online by Cambridge University Press:  08 May 2017

RAN LANZET
Affiliation:
Tel-Aviv University and the Hebrew University of Jerusalem
Corresponding
E-mail address:

Abstract

This paper presents an extended version of the Quantified Argument Calculus (Quarc). Quarc is a logic comparable to the first-order predicate calculus. It employs several nonstandard syntactic and semantic devices, which bring it closer to natural language in several respects. Most notably, quantifiers in this logic are attached to one-place predicates; the resulting quantified constructions are then allowed to occupy the argument places of predicates. The version presented here is capable of straightforwardly translating natural-language sentences involving defining clauses. A three-valued, model-theoretic semantics for Quarc is presented. Interpretations in this semantics are not equipped with domains of quantification: they are just interpretation functions. This reflects the analysis of natural-language quantification on which Quarc is based. A proof system is presented, and a completeness result is obtained. The logic presented here is capable of straightforward translation of the classical first-order predicate calculus, the translation preserving truth values as well as entailment. The first-order predicate calculus and its devices of quantification can be seen as resulting from Quarc on certain semantic and syntactic restrictions, akin to simplifying assumptions. An analogous, straightforward translation of Quarc into the first-order predicate calculus is impossible.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2017 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aoyama, H. (1994). The strong completeness of a system based on Kleene’s strong three-valued logic. Notre Dame Journal of Formal Logic, 35(3), 355368.Google Scholar
Barwise, J. & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4(2), 159219.CrossRefGoogle Scholar
Ben-Yami, H. (2004). Logic and Natural Language: On Plural Reference and its Semantic and Logical Significance. Aldershot, Hants: Ashgate.Google Scholar
Ben-Yami, H. (2006). A critique of Frege on common nouns. Ratio, 19(2), 148155.CrossRefGoogle Scholar
Ben-Yami, H. (2014). The quantified argument calculus. The Review of Symbolic Logic, 7(01), 120146.CrossRefGoogle Scholar
Francez, N. (2014). A logic inspired by natural language quantifiers as subnectors. Journal of Philosophical Logic, 43(6), 11531172.CrossRefGoogle Scholar
Geach, P. T. (1962). Reference and Generality: An Examination of Some Medieval and Modern Theories. Ithaca, NY: Cornell University Press.Google Scholar
Groenendijk, J. & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14(1), 39100.CrossRefGoogle Scholar
Kearns, J. T. (1979). The strong completeness of a system for Kleene’s three-valued logic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 25(3–6), 6168.CrossRefGoogle Scholar
Kneale, W. & Kneale, M. (1971). The Development of Logic. London: Oxford University Press.Google ScholarPubMed
Lanzet, R. & Ben-Yami, H. (2004). Logical inquiries into a new formal system with plural reference. In Hendricks, V., Neuhaus, F., Pedersen, S. A., Scheffler, U., and Wansing, H., editors. First-Order Logic Revisited. Berlin: Logos Verlag, pp. 173223.Google Scholar
Moss, L. S. (2010). Logics for two fragments beyond the syllogistic boundary. In Blass, A., Dershowitz, N., and Reisig, W., editors. Fields of Logic and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of his 70th Birthday. Berlin: Springer, pp. 538564.CrossRefGoogle Scholar
Pratt-Hartmann, I. & Moss, L. (2009). Logics for the relational syllogistic. Review of Symbolic Logic, 2(4), 647683.CrossRefGoogle Scholar
Strawson, P. F. (1950). On referring. Mind, 59(235), 320344.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 74 *
View data table for this chart

* Views captured on Cambridge Core between 08th May 2017 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A THREE-VALUED QUANTIFIED ARGUMENT CALCULUS: DOMAIN-FREE MODEL-THEORY, COMPLETENESS, AND EMBEDDING OF FOL
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A THREE-VALUED QUANTIFIED ARGUMENT CALCULUS: DOMAIN-FREE MODEL-THEORY, COMPLETENESS, AND EMBEDDING OF FOL
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A THREE-VALUED QUANTIFIED ARGUMENT CALCULUS: DOMAIN-FREE MODEL-THEORY, COMPLETENESS, AND EMBEDDING OF FOL
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *