Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s5ss2 Total loading time: 0.444 Render date: 2021-03-05T08:17:51.568Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

NONASSOCIATIVE SUBSTRUCTURAL LOGICS AND THEIR SEMILINEAR EXTENSIONS: AXIOMATIZATION AND COMPLETENESS PROPERTIES

Published online by Cambridge University Press:  15 May 2013

PETR CINTULA
Affiliation:
Institute of Computer Science, Academy of Sciences of the Czech Republic
ROSTISLAV HORČÍK
Affiliation:
Institute of Computer Science, Academy of Sciences of the Czech Republic
CARLES NOGUERA
Affiliation:
Artificial Intelligence Research Institute (IIIA - CSIC) and Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic
Corresponding

Abstract

Substructural logics extending the full Lambek calculus FL have largely benefited from a systematical algebraic approach based on the study of their algebraic counterparts: residuated lattices. Recently, a nonassociative generalization of FL (which we call SL) has been studied by Galatos and Ono as the logic of lattice-ordered residuated unital groupoids. This paper is based on an alternative Hilbert-style presentation for SL which is almost MP-based. This presentation is then used to obtain, in a uniform way applicable to most (both associative and nonassociative) substructural logics, a form of local deduction theorem, description of filter generation, and proper forms of generalized disjunctions. A special stress is put on semilinear substructural logics (i.e., logics complete with respect to linearly ordered algebras). Axiomatizations of the weakest semilinear logic over SL and other prominent substructural logics are provided and their completeness with respect to chains defined over the real unit interval is proved.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2013 

Access options

Get access to the full version of this content by using one of the access options below.

References

Anderson, A. R., & Belnap, N. D. (1975). Entailment: The Logic of Relevance and Necessity. Vol. 1. Princeton, NJ: Princeton University Press.Google Scholar
Běhounek, L., & Cintula, P. (2006). Fuzzy logics as the logics of chains. Fuzzy Sets and Systems, 157, 604610.CrossRefGoogle Scholar
Blok, W. J., & Pigozzi, D. L. (1989). Algebraizable Logics. Vol. 396. Memoirs of the American Mathematical Society. Providence, RI: American Mathematical Society. Available fromhttp://orion.math.iastate.edu/dpigozzi/.Google Scholar
Botur, M. (2011). A non-associative generalization of Hájek’s BL-algebras. Fuzzy Sets and Systems, 178, 2437.CrossRefGoogle Scholar
Burris, S., & Sankappanavar, H. (1981). A Course in Universal Algebra. Vol. 78. Graduate Texts in Mathematics. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Buszkowski, W., & Farulewski, M. (2009). Nonassociative Lambek calculus with additives and context free languages. In Grumberg, O., Kaminski, M., Katz, S., and Wintner, S., editors. Languages: From Formal to Natural. Essays Dedicated to Nissim Francez. Vol. 5533. Lecture Notes in Computer Science. Berlin: Springer.Google Scholar
Cignoli, R., Esteva, F., Godo, L., & Torrens, A. (2000). Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Computing, 4, 106112.CrossRefGoogle Scholar
Cintula, P., Hájek, P., & Horčík, R. (2007). Formal systems of fuzzy logic and their fragments. Annals of Pure and Applied Logic, 150, 4065.CrossRefGoogle Scholar
Cintula, P., Hájek, P., & Noguera, C., editors (2011). Handbook of Mathematical Fuzzy Logic (in 2 volumes). Vol. 37, 38. Studies in Logic, Mathematical Logic and Foundations. London: College Publications.Google Scholar
Cintula, P., & Noguera, C. (2010). Implicational (semilinear) logics I: A new hierarchy. Archive for Mathematical Logic, 49, 417446.CrossRefGoogle Scholar
Cintula, P., & Noguera, C. (2011). A general framework for mathematical fuzzy logic. In Cintula, P., Hájek, P., and Noguera, C., editors, Handbook of Mathematical Fuzzy Logic. Volume 1. Vol. 37. Studies in Logic, Mathematical Logic and Foundations. London: College Publications, pp. 103207.Google Scholar
Cintula, P., & Noguera, C. (2013). The proof by cases property and its variants in structural consequence relations. Studia Logica (to appear).CrossRefGoogle Scholar
Czelakowski, J. (2001). Protoalgebraic Logics. Vol. 10. Trends in Logic. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Esteva, F., & Godo, L. (2001). Monoidal t-norm based logic: Towards a logic for left-continuous t-norms. Fuzzy Sets and Systems, 124, 271288.CrossRefGoogle Scholar
Esteva, F., Godo, L., Hájek, P., & Montagna, F. (2003). Hoops and fuzzy logic. Journal of Logic and Computation, 13, 532555.CrossRefGoogle Scholar
Galatos, N. (2004). Equational bases for joins of residuated-lattice varieties. Studia Logica, 76, 227240.CrossRefGoogle Scholar
Galatos, N., & Jipsen, P. (2013). Residuated frames with applications to decidability. Transactions of the American Mathematical Society, 365, 12191249.CrossRefGoogle Scholar
Galatos, N., Jipsen, P., Kowalski, T., & Ono, H. (2007). Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Vol. 151. Studies in Logic and the Foundations of Mathematics. Amsterdam, The Netherlands: Elsevier.Google Scholar
Galatos, N., & Ono, H. (2010). Cut elimination and strong separation for substructural logics: An algebraic approach. Annals of Pure and Applied Logic, 161, 10971133.CrossRefGoogle Scholar
Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science 50, 1102.CrossRefGoogle Scholar
Hájek, P. (1998). Metamathematics of Fuzzy Logic. Vol. 4 Trends in Logic. Dordrecht, The Netherlandss: Kluwer.CrossRefGoogle Scholar
Höhle, U. (1995). Commutative, residuated l-monoids. In Höhle, U., and Klement, E. P., editors. Non-Classical Logics and Their Applications to Fuzzy Subsets, pp. 53106.CrossRefGoogle Scholar
Horčík, R. (2011). Algebraic semantics: Semilinear FL-algebras. In Cintula, P., Hájek, P., and Noguera, C., editors. Handbook of Mathematical Fuzzy Logic—Volume 1. Vol. 37. Studies in Logic, Mathematical Logic and Foundations. London: College Publications, pp. 283353.Google Scholar
Jenei, S., & Montagna, F. (2002). A proof of standard completeness for Esteva and Godo’s logic MTL. Studia Logica, 70, 183192.CrossRefGoogle Scholar
Jenei, S., & Montagna, F. (2003). A proof of standard completeness for non-commutative monoidal t-norm logic. Neural Network World, 13, 481489.Google Scholar
Lambek, J. (1958). On the calculus of syntactic types. American Mathematical Monthly, 65, 154170.CrossRefGoogle Scholar
Lambek, J. (1961). The mathematics of sentence structure. In Jakobson, R., editor. Structure of Language and Its Mathematical Aspects. Providence, NJ: American Mathematical Society, pp. 166178.CrossRefGoogle Scholar
Metcalfe, G., & Montagna, F. (2007). Substructural fuzzy logics. Journal of Symbolic Logic, 72, 834864.CrossRefGoogle Scholar
Paoli, F. (2002). Substructural Logics: A Primer. Vol. 13 Trends in Logic. Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
Raftery, J. G. (2001). A characterization of varieties. Algebra Universalis, 45, 449450.CrossRefGoogle Scholar
Restall, G. (2000). An Introduction to Substructural Logics. New York: Routledge.CrossRefGoogle Scholar
Schroeder-Heister, P., & Dosen, K., editors (1994). Substructural Logics. Vol. 2. Studies in Logic and Computation. Oxford: Oxford University Press.Google Scholar
Wang, S., & Zhao, B. (2009). HpsUL is not the logic of pseudo-uninorms and their residua. Logic Journal of the Interest Group of Pure and Applied Logic, 17, 413419.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 26 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

NONASSOCIATIVE SUBSTRUCTURAL LOGICS AND THEIR SEMILINEAR EXTENSIONS: AXIOMATIZATION AND COMPLETENESS PROPERTIES
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

NONASSOCIATIVE SUBSTRUCTURAL LOGICS AND THEIR SEMILINEAR EXTENSIONS: AXIOMATIZATION AND COMPLETENESS PROPERTIES
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

NONASSOCIATIVE SUBSTRUCTURAL LOGICS AND THEIR SEMILINEAR EXTENSIONS: AXIOMATIZATION AND COMPLETENESS PROPERTIES
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *