Hostname: page-component-7d684dbfc8-kpkbf Total loading time: 0 Render date: 2023-09-25T17:51:08.642Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

INFINITARY TABLEAU FOR SEMANTIC TRUTH

Published online by Cambridge University Press:  08 April 2015

TOBY MEADOWS*
Affiliation:
Department of Philosophy, University of Aberdeen
*
*DEPARTMENT OF PHILOSOPHY, UNIVERSITY OF ABERDEEN, 50-52 COLLEGE BOUNDS, ABERDEEN, AB24 3DS, UK E-mail: toby.meadows@gmail.com

Abstract

We provide infinitary proof theories for three common semantic theories of truth: strong Kleene, van Fraassen supervaluation and Cantini supervaluation. The value of these systems is that they provide an easy method of proving simple facts about semantic theories. Moreover we shall show that they also give us a simpler understanding of the computational complexity of these definitions and provide a direct proof that the closure ordinal for Kripke’s definition is $\omega _1^{CK}$. This work can be understood as an effort to provide a proof-theoretic counterpart to Welch’s game-theoretic (Welch, 2009).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BIBLIOGRAPHY

Barwise, J. (1975). Admissible Sets and Structures. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Boolos, G., Burgess, J. P., & Jeffrey, R. C. (2002). Computability and Logic (fourth edition). Melbourne: Cambridge University Press.CrossRefGoogle Scholar
Burgess, J. P. (1986). The truth is never simple. The Journal of Symbolic Logic, 51(3), 663681.CrossRefGoogle Scholar
Cantini, A. (1990). A theory of truth arithmetically equivalent to $I\,D_1^1$. The Journal of Symbolic Logic, 55(1), 244259.CrossRefGoogle Scholar
Devlin, K. J. (1984). Constructibility. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Halbach, V. (2011). Axiomatic Theories of Truth. London: Cambridge University Press.CrossRefGoogle Scholar
Hjorth, G. (Unpublished notes). Vienna Notes on Effective Descriptive Set Theory and Admissible Sets.
Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72, 690716.CrossRefGoogle Scholar
Mansfield, R., & Weitkamp, G. (1985). Recursive Aspects of Descriptive Set Theory. Oxford logic guides. New York: Oxford University Press.Google Scholar
Moschovakis, Y. (1974). Elementary Induction on Abstract Structures. Mineola: Dover.Google Scholar
Moschovakis, Y. N. (1980). Descriptive Set Theory. New York: North Holland.Google Scholar
Pohlers, W. (2009). Proof Theory: The First Step into Impredicativity. Berlin: Springer.Google Scholar
Priest, G. (2008). An Introduction to Non-Classical Logic: From If to Is. Melbourne: Cambridge University Press.CrossRefGoogle Scholar
Sacks, G. E. (1990). Higher Recursion Theory. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Smullyan, R. M. (1968). First-Order Logic. New York: Dover.CrossRefGoogle Scholar
Toledo, S. (1975). Tableau Systems for First Order Numbers Theory and Certain Higher Order Theories. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Welch, P. (2009). Games for truth. Bulletin of Symbolic Logic, 15(4), 410427.CrossRefGoogle Scholar