Hostname: page-component-7d684dbfc8-26pbs Total loading time: 0 Render date: 2023-09-26T07:16:42.481Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false


Published online by Cambridge University Press:  16 January 2015

Department of Philosophy, University of California-Berkeley


In a recent article (Mancosu, 2009), I have explored the historical, mathematical, and philosophical issues related to the new theory of numerosities. The theory of numerosities provides a context in which to assign ‘sizes’ to infinite sets of natural numbers in such a way as to preserve the part-whole principle, namely if a set A is properly included in B then the numerosity of A is strictly less than the numerosity of B. Numerosity assignments differ from the standard assignment of size provided by Cantor’s cardinality assignments. In this paper I generalize some worries, raised by Richard Heck, emerging from the theory of numerosities to a line of thought resulting in what I call a ‘good company’ objection to Hume’s Principle (HP). The paper is centered around five main parts. The first (§3) takes a historical look at nineteenth-century attributions of equality of numbers in terms of one-one correlation and argues that there was no agreement as to how to extend such determinations to infinite sets of objects. This leads to the second part (§4) where I show that there are countably-infinite many abstraction principles that are ‘good’, in the sense that they share the same virtues of HP (or so I claim) and from which we can derive the axioms of second-order arithmetic. All the principles I present agree with HP in the assignment of numbers to finite concepts but diverge from it in the assignment of numbers to infinite concepts. The third part (§5) connects this material to a debate on Finite Hume’s Principle between Heck and MacBride. The fourth part (§6) states the ‘good company’ objection as a generalization of Heck’s objection to the analyticity of HP based on the theory of numerosities. In the same section I offer a taxonomy of possible neo-logicist responses to the ‘good company’ objection. Finally, §7 makes a foray into the relevance of this material for the issue of cross-sortal identifications for abstractions.

Research Article
Copyright © Association for Symbolic Logic 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Antonelli, A. (2010). Notions of invariance for abstraction principles. Philosophia Mathematica (III), 18, 276292.CrossRefGoogle Scholar
Benci, V. (1995). I numeri e gli insiemi etichettati. Volume 261 of Conferenze del seminario di matematica dell’Universita’ di Bari. Bari: Laterza, pp. 29.
Benci, V., & Di Nasso, M. (2003). Numerosities of labeled sets: A new way of counting. Advances in Mathematics, 173, 5067.CrossRefGoogle Scholar
Benci, V., Di Nasso, M., & Forti, M. (2006). An Aristotelean notion of size. Annals of Pure and Applied Logic, 143, 4353.CrossRefGoogle Scholar
Bettazzi, R. (1887). Sul concetto di numero. Periodico di matematica per l’insegnamento secondario, 2, 97113 and 129–143.Google Scholar
Black, R. (2000). Nothing matters too much, or Wright is wrong. Analysis, 60, 229237.CrossRefGoogle Scholar
Blanchette, P. (2012). Frege’s Conception of Logic. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bolzano, B. (1837). Wissenschaftslehre. Sulzbach: Seidel. Partial English translation in Bolzano (1973).
Bolzano, B. (1851). Paradoxien des Unendlichen. Leipzig: Meiner. See also Bolzano (1975a).Google Scholar
Bolzano, B. (1973). Theory of Science. Dordrecht: Reidel.CrossRefGoogle Scholar
Bolzano, B. (1975a). Paradoxien des Unendlichen. Hamburg: Felix Meiner Verlag. Translated as Paradoxes of the Infinite, edited by Steele, D. A., London: Routledge and Kegan Paul and New Haven: Yale University Press, 1950. A more recent translation, which I use, is in Russ (2005).Google Scholar
Bolzano, B. (1975b). Einleitung zur Grössenlehre. Erste Begriffe der allgemeinen Grössenlehre, Gesamtausgabe, II A 7, edited by Jan Berg. Stuttgart-Bad Cannstatt: Friedrich Fromann Verlag.Google Scholar
Boolos, G. (1987). The consistency of Frege’s Foundations. In Thomson, J., editor. On Being and Saying: Essays in Honor of Richard Cartwright. Cambridge, MA: MIT Press, pp. 320. Reprinted in Boolos (1998, pp. 183–201).Google Scholar
Boolos, G. (1990). The standard equality of numbers. In Boolos, G., editor. Meaning and Method: Essays in Honor of Hilary Putnam. Cambridge: Cambridge University Press, pp. 261277. Reprinted in Boolos (1998, pp. 202–219).Google Scholar
Boolos, G. (1996). On the proof of Frege’s theorem. In Morton, A. and Stich, S. P., editors. Paul Benacerraf and his Critics. Cambridge, MA: Blackwell, pp. 143159. Reprinted in Boolos (1998, pp. 275–290).Google Scholar
Boolos, G. (1997). Is Hume’s principle analytic? In Heck (1997b, pp. 245–261). Reprinted in Boolos (1998, pp. 301–314).
Boolos, G. (1998). Logic, Logic, and Logic. Cambridge, MA: Harvard University Press.Google Scholar
Burali Forti, C. (1894). Logica Matematica. Milano: Hoepli.Google Scholar
Cantor, G. (1883). Grundlagen einer allgemeinen Mannigfaltigkeitslehre. Leipzig: Teubner.Google Scholar
Clark, P. (2004). Frege, neo-logicism and applied mathematics. In Stadler, F., editor. Induction and Deduction in the Sciences. Dordrecht: Kluwer, pp. 169183. Reprinted in Cook (2007, pp. 45–60).CrossRefGoogle Scholar
Cook, R. (2002). The state of the economy: Neo-logicism and inflation. Philosophia Mathematica (III), 10, 4366.CrossRefGoogle Scholar
Cook, R., editor. (2007). The Arché Papers on the Mathematics of Abstraction. Dordrecht: Springer.CrossRefGoogle Scholar
Cook, R. (2012). Conservativeness, stability, and abstraction. British Journal for the Philosophy of Science, 63, 673696.CrossRefGoogle Scholar
Cook, R., & Ebert, P. (2005). Abstraction and identity. Dialectica, 59(2), 121139.CrossRefGoogle Scholar
Couturat, L. (1896). De l’Infini Mathématique. Paris: Alcan.Google Scholar
Demopoulos, W. (2003). On the philosophical interest of Frege arithmetic. Philosophical Books, 44, 220228. Reprinted in Cook (2007, 105–115).CrossRefGoogle Scholar
Dummett, M. (1998). Neo-Fregeans; in bad company? In Schirn, M., editor. The Philosophy of Mathematics Today. New York: Clarendon Press, pp. 369387.Google Scholar
Dummett, M. (1991). Frege. Philosophy of Mathematics. Cambridge, MA: Harvard University Press.Google Scholar
Ewald, W., editor. (1996). From Kant to Hilbert: A Source Book in the Foundations of Mathematics, Volume 2. Oxford: Oxford University Press.Google Scholar
Fine, K. (2002). The Limits of Abstraction. Oxford: Oxford University Press.Google Scholar
Frege, G. (1884). Die Grundlagen der Arithmetik. Breslau: Koebner. Translated into English by J. Austin as The Foundations of Arithmetic (second edition). New York: Harper, 1960.Google Scholar
Frege, G. (1893). Grundgesetze der Arithmetik I. Jena: H. Pohle. Reprinted by Hildesheim: G. Olms.Google Scholar
Hale, R. (1997). Grundlagen §64. Proceedings of the Aristotelian Society, 97, 243261. Reprinted in Hale and Wright ( 2001a, pp. 90116).CrossRefGoogle Scholar
Hale, R. & Wright, C. (2001a). The Reason’s Proper Study. Oxford: Clarendon Press.CrossRefGoogle Scholar
Hale, R. & Wright, C. (2001b). “To Bury Caesar …”. In Wright & Hale (2001a, pp. 335396).
Hale, B. & Wright, C. (2009). Focus restored: comments on John MacFarlane. In Linnebo (2009a, pp. 457–482).
Heck, R. (1997a). Finitude and Hume’s principle. Journal of Philosophical Logic, 26, 589617. Reprinted with a postscript in Heck (2011, pp. 237–266).CrossRefGoogle Scholar
Heck, R. (1997b). Logic, Language and Thought. Oxford: Oxford University Press.Google Scholar
Heck, R. (2000). Cardinality, counting, and equinumerosity. Notre dame Journal of Formal Logic, 41, 187209. Reprinted in Heck (2011, pp. 156–179).Google Scholar
Heck, R. (2011). Frege’s Theorem. Oxford: Oxford University Press.Google Scholar
Helmholtz, H. (1887). Zählen und Messen, Erkenntnistheoretisch betrachtet. Philosophische Aufsätze, Eduard Zeller zu seinem fünfzigjährigen Doctorjubiläum gewidmet. Leipzig: Fues’ Verlag, pp. 1752. English translation (Counting and Measuring) in Ewald 1996, vol. II, pp. 727–752.Google Scholar
Husserl, E. (1891). Philosophie der Arithmetik. Halle: Pfeffer.Google Scholar
Kanamori, A. (1997). The mathematical import of Zermelo’s well-ordering theorem. The Bulletin of Symbolic Logic, 3, 281311.CrossRefGoogle Scholar
Kossak, E. (1872). Die Elemente der Arithmetik. Berlin.Google Scholar
Linnebo, Ø., editor. (2009a). The Bad Company Problem. Synthese, 170 (Special Issue no.3).
Linnebo, Ø. (2009b). Introduction. In Linnebo (2009a, pp. 321–329).
MacBride, F. (2000). On finite Hume. Philosophia Mathematica, 8, 150159.CrossRefGoogle Scholar
MacBride, F. (2002). Could nothing matter? Analysis, 62, 125135. Reprinted in Cook (2007, pp. 95–104).CrossRefGoogle Scholar
MacBride, F. (2003). Speaking with shadows: A study of neo-logicism. British Journal for Philosophy of Science, 54, 103163.CrossRefGoogle Scholar
Mancosu, P. (2009). Measuring the size of infinite collections of natural numbers: Was Cantor’s theory of infinite number inevitable? Review of Symbolic Logic, 2, 612646.CrossRefGoogle Scholar
Peano, G. (1891). Sul concetto di numero. Rivista di Matematica, 1, 87102 and 256–267.Google Scholar
Rumfitt, I. (2001). Hume’s principle and the number of objects. Nous, 35(4), 515541.CrossRefGoogle Scholar
Russ, S. (2005). The Mathematical Works of Bernard Bolzano. Oxford: Oxford University Press.Google Scholar
Schröder, E. (1873). Lehrbuch der Arithmetik und Algebra. Leipzig: Teubner.Google Scholar
Shapiro, S., & Ebert, P. (2009). The good, the bad, and the ugly. In Linnebo (2009a,pp. 415–441).
Shapiro, S., & Weir, A. (2000). ‘Neologicist’ logic is not epistemically innocent. Philosophia Mathematica, 8, 160189.CrossRefGoogle Scholar
Stolz, O. (1885). Vorlesungen über allgemeine Arithmetik. Leipzig: Teubner.Google Scholar
Tappenden, J. (forthcoming). Philosophy and the Emergence of Contemporary Mathematics : Frege in his Mathematical Context. Oxford: Oxford University Press.
Tennant, N. (2013). Logicism and neologicism. In Zalta, E., editor. Stanford Encyclopedia of Philosophy.Google Scholar
Textor, M. (forthcoming). Concept Words, Predicates and ‘a great faultline in Frege’s philosophy’. Version dated March 2012.
Weir, A. (2004). Neo-Fregeanism: An embarrassment of riches. Notre Dame Journal of Formal Logic, 44, 1348. Reprinted in Cook (2007, pp. 383–420).CrossRefGoogle Scholar
Wright, C. (1983). Frege’s Conception of Numbers as Objects. Aberdeen: Aberdeen University Press.Google Scholar
Wright, C. (1997). Is Hume’s principle analytic? In Heck (1997b, pp. 201–244). Reprinted in Hale & Wright (2001a, pp. 272–306).
Wright, C. (forthcoming). Abstraction and epistemic entitlement: On the epistemological status of Hume’s principle. In Ebert, P. and Rossberg, M., editors. Abstractionism. Oxford: Oxford University Press.