Skip to main content Accessibility help
×
Home

Watershed-scale modeling of the water quality effects of cropland conversion to short-rotation woody crops

  • Karen Updegraff (a1), Prasanna Gowda (a2) and David J. Mulla (a2)

Abstract

The conversion of cropland to the production of woody biomass, or short-rotation woody crops (SRWCs), has the potential to provide an economic alternative to Midwestern farmers, while simultaneously offering an environmental dividend in the form of reduced erosion and nutrient pollution of streams. However, notwithstanding a wealth of plot-scale and anecdotal data suggestive of these benefits, there are few watershed-scale integrated analyses on which to base regional policy decisions regarding incentives to convert fields to SRWCs. This study applied a field-scale runoff, sediment and nutrient transport model (Agricultural Drainage and Pesticide Transport, ADAPT) to a simulation of 10, 20 and 30% cropland conversion to SRWCs, grown on a 5-year rotation, in a representative Minnesota River sub-watershed. While the generation of a highly precise simulation would require extensive calibration of the model, its application with parameters previously calibrated to neighboring, similar watersheds provided reasonably robust results that indicated real differences resulting from cropland conversion. At the highest conversion level, mean annual runoff was reduced by up to 9%, sediment loads by 28% and nitrogen (N) loads by 15%, although total phosphorus (P) loads increased by 2% relative to the no-SRWC scenario. However, the relative benefits of conversion at the field level were contingent on soil type, drainage status and the alternative crop. These differences provide useful insights with respect to the targeting of possible conversion incentives.

Copyright

Corresponding author

*Corresponding author: Karen.Updegraff@sdsmt.edu

References

Hide All
1CRPD 2001. Short rotation woody crops: a role for the State of Minnesota. Minnesota State University, Center for Rural Policy and Development, Mankato, Minnesota, USA.
2Vaughan, W., Russell, C., Gianessi, L., and Nielsen, L. 1982. Measuring and predicting water quality in recreation related terms. Journal of Environmental Management 15:363380.
3Ribaudo, M., Young, C., and Epp, D. 1984. Recreation benefits from an improvement in water quality at St. Albans Bay, Vermont (Staff Report AGES 840127). USDA Economic Research Service, Natural Resource Economics Division.
4Henry, R., Ley, R., and Welle, P. 1988. The economic value of water resources: the Lake Bemidji survey. Journal of the Minnesota Academy of Science 53(3): 3744.
5Jacobson, P., Close, T., Anderson, C., and Kelly, T. 1999. Attitudes of Minnesota residents about fisheries issues. Investigational Report 478. Minnesota Department of Natural Resources.
6Feather, P., Hellerstein, D., and Hansen, L. 1999. Economic valuation of environmental benefits and the targeting of conservation programs: the case of CRP. Agricultural Economic Report AER 778. USDA Economic Research Service, Resource Economics Division.
7Ribaudo, M. 1989. Water quality benefits from the Conservation Reserve Program (Agricultural Economic Report AER 606). USDA Economic Research Service.
8Tolbert, V., Thornton, F., Joslin, J., Beck, B., Bandaranayake, W., Tyler, D., Pettry, D., Green, T., Malik, R., Bingham, L., Houston, A., Shires, M., Dewey, J., and Schoenholtz, S. 1998. Soil and water quality aspects of herbaceous and woody energy crop production: lessons form research-scale comparisons with agricultural crops. BioEnergy ’98–-The Eighth National Bioenergy Conference: Expanding Bioenergy Partnerships, 4–8 October 1996, Madison, Wisconsin, USA.
9Malik, R.K., Green, T.H., Brown, G.F. and Mays, D. 2000. Use of cover crops in short rotation hardwood plantations to control erosion. Biomass and Bioenergy 18:479487.
10Licht, L. 1994. Ecolotree buffers strategically planted on Iowa farms for ecological and commercial value. Working Trees: Farming in the 1990’s. Owatonna, Minnesota, USA.
11Udawata, R., Krstansky, J., Henderson, G., and Garrett, H. 2002. Agroforestry practices, runoff, and nutrient loss: a paired watershed comparison. Journal of Environmental Quality 31:12141225.
12High Island Watershed Assessment Project. Available at website http://cgee.hamline.edu/rivers/MRN/HIWAP/ (verified 29 February 2004).
13Dalzell, B. 2000. Modeling and evaluation of non point source pollution in the Lower Minnesota River Basin. Master’s thesis, University of Minnesota, St. Paul, Minnesota, USA.
14MPCA 1999. Minnesota River Basin Assessment of Stream Water Quality. Based on the 1998 MN 305(b) Report to Congress of the United States. Minnesota Pollution Control Agency, St. Paul, Minnesota, USA.
15Gowda, P. 1996. An integrated spatial-process model to predict agricultural nonpoint source pollution. PhD thesis, Ohio State University, Columbus, Ohio, USA.
16Leonard, R., Knisel, W., and Still, D. 1987. GLEAMS: groundwater loading effects of agricultural management systems. Transactions of the American Society of Agricultural Engineers 30(5): 14031418.
17Chung, S., Ward, A., and Shalk, C. 1992. Evaluation of the hydrologic component of the adapt water table management model. Transactions of the American Society of Agricultural Engineers 35(2): 571579.
18Zucker, L. and Brown, L. 1998. Agricultural drainage–water quality impacts and subsurface drainage studies in the Midwest. Bulletin 871. Ohio State University, Columbus, Ohio, USA.
19Gowda, P., Ward, A., White, D., Baker, D., and Lyon, J. 1999. An approach for using field scale models to predict peak flows on agricultural watersheds. Journal of the American Water Resources Association 35(5): 12231232.
20Northern States Power Company 1999. NSP signs biomass contracts with St. Paul Cogeneration, EPS/Beck Power. News Release, 8 January.
21Minnesota Agricultural Statistics Service 1994. Minnesota Agricultural Statistics 1994. Annual Report. MASS, St. Paul, Minnesota, USA.
22Minnesota Agricultural Statistics Service 1995. Minnesota Agricultural Statistics 1995. Annual Report. MASS, St. Paul, Minnesota, USA.
23Minnesota Agricultural Statistics Service 1996. Minnesota Agricultural Statistics 1996. Annual Report. MASS, St. Paul, Minnesota, USA.
24Minnesota Agricultural Statistics Service 2000. Minnesota Agricultural Statistics 2000. Annual Report. MASS, St. Paul, Minnesota, USA.
25Isebrands, J., Nelson, N., Dickman, D., and Michael, D. 1983. Yield physiology of short rotation intensively cultured poplars. In Hansen, E.A. (compiler). Intensive Plantation Culture: 12 years Research. USDA Forest Service GTR NC–91. p. 7793.
26Zavitkovski, J. 1983. Projected and actual biomass production of 2- to 10-year-old intensively cultured Populus ‘tristis #1’. In E.A. Hansen (compiler). Intensive Plantation Culture: 12 years Research. USDA Forest Service GTR NC–91. p. 7276.
27Friend, A., Scarascia-Mugnozza, G., Isebrands, J., and Heilman, P. 1991. Quantification of two-year-old hybrid poplar root systems: morphology, biomass and C distribution. Tree Physiology 8:109119.
28DeBell, D., Clendenen, G., Harrington, C., and Zasada, J. 1996. Tree growth and stand development in short-rotation Populus plantings: 7-year results for two clones at three spacings. Biomass and Bioenergy 11(4): 253269.
29Stettler, R., Zsuffa, L., and Wu, R. 1996. The role of hybridization in the genetic manipulation of Populus . In Stettler, R., Bradshaw, J.H.D., Heilman, P., and Hinckley, T. (eds). Biology of Populus and its Implications for Management and Conservation. NRC Research Press, Ottawa, Canada. p. 87112.
30AURI 19971998. Short rotation forestry of hybrid poplars. Ag Innovation News. MN 56716. University of Minnesota, Agricultural Utilization Research Institute. Crookston, Minnesota, USA.
31Ihaka, R. and Gentleman, R. 1996. R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5(3): 299314.
32USGS. Available at Web site http://waterdata.usgs.gov/mn/nwis (verified 29 February 2004).
33Available at Web site http://www.crh.noaa.gov/ncrfc/documents/MinnRiver.html (verified 29 February 2004).
34Dalzell, B., Gowda, P., Mulla, D., and Ward, A. 1999. Predicting nonpoint source pollution for a small agricultural watershed in southern Minnesota. 1999 ASAE Annual International Meeting, Paper No. 992215. American Society of Agricultural Engineers, St. Joseph, Michigan, USA.
35Licht, L., Schnoor, J., and Nair, D. 1992. Ecolotree buffers for controlling nonpoint sediment and nitrate. Presented at the 1992 International Winter Meeting of The ASAE. Paper No. 922626. American Society of Agricultural Engineers, St. Joseph, Michigan, USA.
36Perry, C., Miller, R., and Brooks, K. 2001. Impacts of short-rotation hybrid poplar plantations on regional water yield. Forest Ecology and Management 143:143151.
37MPCA 2001. Draft Minnesota River Basin Plan. 18 June2001. Minnesota Pollution Control Agency. Online Document. Available at http://www.pca.state.mn.us/water/basins/mnriver/mnbasinplan.pdf (verified 29 February 2004).
38Altier, L., Lowrance, R., Williams, R., and Inamdar, S. 1998. The Riparian Ecosystem Management Model: Plant growth component. Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, USA, April. p. 1.331.40.
39Todd, R., Fail, J. Jr., Hendrickson, O. Jr, and Asmussn, L. 1984. Riparian forests as nutrient filters in agricultural watersheds. BioScience 34(6): 374377.
40Lowrance, R., Leonard, R., and Sheridan, J. 1985. Managing riparian ecosystems to control nonpoint pollution. Journal of Soil and Water Conservation 40(1): 8791.
41Cooper, J., Gilliam, J., Daniels, R., and Robarge, W. 1987. Riparian areas as filters for agricultural sediment. Soil Science Society of America Journal 51:416420.

Keywords

Watershed-scale modeling of the water quality effects of cropland conversion to short-rotation woody crops

  • Karen Updegraff (a1), Prasanna Gowda (a2) and David J. Mulla (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed