Skip to main content Accessibility help

Hedgerow barriers and other reduced-risk controls for managing Oriental fruit moth, Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) in apples

  • Carlos Garcia-Salazar (a1), Larry J. Gut (a2) and Mark E. Whalon (a2)


Management of Oriental fruit moth, Grapholitha molesta (Busck), in apple using an ‘Enhanced Integrated Pest Management (IPM)’ program comprised of a hedgerow barrier, pheromone-based mating disruption and reduced-risk [non-organophosphorous (OP) or carbamate] insecticides was investigated over a 5-year period. The barrier was comprised of a planting of three rows of hybrid poplar, Populus deltoides Bartr.×Populus nigra L., one row of Italian alder, Alnus cordata L. (nectar reward), and one row of white pine, Pinus strobus L. The hedgerow completely surrounded the perimeter of the apple orchard and was treated with garlic and a low rate of pyrethroid insecticide in 4 of the 5 years. The Enhanced IPM program significantly reduced G. molesta populations as measured by moth captures in pheromone traps. Captures of G. molesta were significantly higher in apple orchards treated with OP and carbamate insecticides, ‘Conventional IPM’, and either not surrounded by the hedgerow or with the barrier present but not treated with the repellent compounds. To explain these differences in G. molesta control, and the potential non-lethal effect of hedgerow barriers on G. molesta orchard colonization, we studied the adult vertical movement in a traditional unsprayed standard apple orchard at three different heights: 0.95, 1.95 and 3.20 m, respectively. In the overwintering generation at a height of 0.95 and 1.95 m, the mean number of moths captured per sampling period was 14.64 and 14.84, respectively, and only 2.95 at 3.20 m. However, the number of individuals captured in the second and third generations was not significantly different at the three different heights. Fruit damage evaluated before ‘June drop’ closely corresponded to the distribution of moths captured during the overwintering generation. Fruit damage at a height of 1.95 and 3.20 m was 5.8 and 3.5%, respectively. These results indicated that G. molesta is a weak flyer and that hedgerow barriers exerted some influence in the colonization of the orchard by limiting the free movement of adults from the overwintering generation. Thus, hedgerow barriers seem to limit early migration and establishment of G. molesta in the orchard. This in turn may reduce the size of the following generations and makes subsequent control easier under the Enhanced IPM program.


Corresponding author

*Corresponding author:


Hide All
1 Rice, R.E. and Kirsch, P. 1990. Mating disruption of oriental fruit moth in the United States. In Ridgway, R.L., Silverstein, R.M. and Inscoe, M.N. (eds). Behavior-modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. M. Dekker, New York. p. 193211.
2 Howitt, G.H. 1993. Common Tree Fruit Pests. Michigan State University Extension, NCR 63, E. Lansing, MI.
3 Hull, L. and Krawcyzk, G. 2001. Oriental fruit moth degree day model. Penn Fruit News 81:2336.
4 Reissig, W.H., Stanley, B.H., and Hebding, H.E. 1986. Azinphos-methyl resistance and weight-related response of obliquebanded leafroller (Lepidoptera: Tortricidae) larvae to insecticides. Journal of Economic Entomology 78:692699.
5 Bush, M.R., Abdel-Aal, Y.A.I., and Rock, G.C. 1993. Parathion resistance and esterase activity in codling moth (Lepidoptera: Tortricidae) from North Carolina. Journal of Economic Entomology 86:660666.
6 Chapman, K.L. and Barrett, B.A. 1997. Susceptibility of the codling moth (Lepidoptera: Tortricidae) to azinphosmethyl in Missouri. Journal of Agricultural Entomology 14:441447.
7 Ahmad, M., Hollingworth, R.M., and Wise, J.C. 2001. Broad-spectrum insecticide resistance in obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae) from Michigan. Pest Management Science 58:834838.
8 Waldstein, D.E. and Reissig, W.H. 2000. Synergism of tebufenozide in resistant and susceptible strains of obliquebanded leafroller (Lepidoptera: Tortricidae) and resistance to new insecticides. Journal of Economic Entomology 93:17681772.
9 Croft, B.A. and Hoyt, S.C. 1978. Considerations for the use of pyrethroid insecticides for deciduous fruit pest control in the USA. Environmental Entomology 7:627630.
10 Croft, B.A. 1982. Arthropod resistance to insecticides: a key to pest control failures and successes in North American apple orchards. Entomologia Experimentalis et Applicata 31:88110.
11 Whalon, M.E. and Croft, B.A. 1982. Apple IPM (integrated pest management) in North America. Annual Review of Entomology 29:435470.
12 Wise, C.J. and Gut, L.J. 1999. Season long broad spectrum insect control. Arthropod Management Tests 24:A33.
13 Wise, C.J. and Gut, L.J. 2000. Control of plum curculio. Arthropod Management Tests 25:A26.
14 Chandler, W.H. 1925. Conditions that affect the minimum temperature in orchards and means of avoiding injury. In Chandler, W.H. (ed.). Fruit Growing. Houghton Mifflin Company, The Riverside Press, Cambridge. p. 569584.
15 Childers, N.F. 1976. Establishing the fruit planting. In Childers, N.F.(ed.). Modern Fruit Science. Horticultural Publications, Rutgers University, New Brunswick, NJ. p. 3165.
16 Hewitt, A.J. 2001. Drift filtration by natural and artificial collectors: a literature review. Available at Web site
17 Maxwell, C.W. 1968. The recapture of marked apple maggot adults in several orchards from one release point. Journal of Economic Entomology 61:11571159.
18 Whalon, M.E. and Croft, B.A. 1985. Dispersal of Apple Pests and Natural Enemies in Michigan. Michigan State University, Agricultural Experiment Station Research Report 467. 24 p.
19 Prokopy, R.J., Johnson, S.A., and O'Brien, M.T. 1990. Second-stage integrated management of apple arthropod pests. Entomologia Experimentalis et Applicata 54:919.
20 Welsh, D.B. and Grove, G. 2001. Repelled and repulsed: two-spotted spider mites react to agrochemicals. Agrochemical and Environmental News 181:1417.
21 Whalon, M.E. and Croft, B.A. 1986. Immigration and colonization of portable apple trees by arthropod pests and their natural enemies. Crop Protection 5:376384.
22 Larsen, K.J. and Whalon, M.E. 1988. Dispersal of Paraphlepsius irroratus (Say) (Homoptera: Cicadellidae) in peach and cherry orchards. Environmental Entomology 17:842851.
23 Mowry, T.M. and Whalon, M.E. 1984. Comparisons of leafhopper species complexes in the ground cover of sprayed and unsprayed peach orchards in Michigan (Homoptera: Cicadellidae) a. The Great Lakes Entomologist 17:205209.
24 Whalon, M.E. and Elsner, E.A. 1982. Impact of insecticides on Illinoia pepperil and its predators. Journal of Economic Entomology 75:356358.
25 Bush, M.R. and Whalon, M.E. 1994. Investigating Ground Cover and Physical Barriers for Control of Pests and Augmentation of Natural Enemies on Stone Fruit. Report to the Southwest Michigan Research and Extension Center, Benton Harbor, MI.
26 Bush, M.R. and Whalon, M.E. 1995. Investigating ground cover and physical barriers for control of pests and augmentation of natural enemies on stone fruit. Report to the Southwest Michigan Research and Extension Center, Benton Harbor, MI.
27 Zar, J.H. 1984. Biostatistical Analysis. 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. p. 236238.
28 Ahmad, T.R. and Al-Gharbawi, Z.A. 1986. Effects of pheromone trap design and placement on catches of codling moth, Cydia pomonella males. Journal of Applied Entomology 59:5257.
29 Howell, J.F., Schmidt, R.S., Horton, D.R., Khattak, S.U.K., and White, L.D. 1990. Codling moth: male moth activity in response to pheromone lures and pheromone-baited traps at different elevations within and between trees. Environmental Entomology 19:573577.
30 Lawson, D.S., Reissig, W.H., Agnello, A.M., Nyrop, J.P., and Roelofs, W.L. 1996. Interference with the male-finding communication system of the obliquebanded leafroller (Lepidoptera: Tortricidae) using synthetic sex pheromones. Environmental Entomology 25:895905.
31 Agnello, A.H., Reissig, W.H., Spangler, S.M., Charlton, R.E., and Kain, D.P. 1996. Trap response and fruit damage by obliquebanded leafroller (Lepidoptera: Tortricidae) in pheromone-treated apple orchards in New York. Environmental Entomology 25:268282.
32 Rothschild, G.H.L. and Minsk, A.K. 1974. Time of activity of male Oriental fruit moth at pheromone sources in the field. Environmental Entomology 3:10031007.
33 Rothschild, G.H.L. and Minsk, A.K. 1977. Some factors influencing the performance of pheromone traps for Oriental fruit moth in Australia. Entomologia Experimentalis et Applicata 22:171182.
34 Phillips, J.H.H. and Proctor, J.R. 1969. Studies on the fecundity and behavior of the Oriental fruit moth, Grapholitha molesta (Lepidoptera: Tortricidae), on the Niagara Peninsula of Ontario. Canadian Entomologist 101:10241033.
35 Hughes, J. and Dorn, S. 2002. Sexual differences in the flight performance of the oriental fruit moth Cydia molesta. Entomologia Experimentalis et Applicata 103:171182.


Related content

Powered by UNSILO

Hedgerow barriers and other reduced-risk controls for managing Oriental fruit moth, Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) in apples

  • Carlos Garcia-Salazar (a1), Larry J. Gut (a2) and Mark E. Whalon (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.