Skip to main content Accessibility help

Considering canopy architecture when planning cover crop mixtures

  • Randy L. Anderson (a1)


Producers may be able to improve growth of cover crop mixtures by selecting species to occupy different levels (zones) in the cover crop canopy. This suggestion is based on a study where we compared four cover crop treatments, comprised of one, three, six and nine species, for biomass production. Oat, dry pea and oilseed radish were present in all multi-species mixtures. Treatments were established in August, following spring wheat harvest. Biomass was harvested 9 weeks later. The most productive treatment was the oat–dry pea–oilseed radish mixture. Species of this mixture occupied different zones in the canopy and minimized interspecies competition to improve production. Cover crop mixtures of six and nine species produced 24% less biomass, which we partially attribute to unequal distribution of species in zones of the canopy. This suggestion with canopy architecture could be tested further with other cover crop species to quantify its impact.


Corresponding author

* Corresponding author:


Hide All
Brainard, D.C., Bellinder, R.R., and Kumar, V. 2011. Grass–legume mixtures and soil fertility affect cover crop performance and weed seed production. Weed Technology 25:473479.
Hansen, M.J., Owens, V.N., Beck, D., and Sexton, P. 2013. Suitability of cover crop monocultures for late-season forage in South Dakota. Canadian Journal of Plant Science 93:589597.
[NRCS] Natural Resources Conservation Service 2015. Cover crops. Available at Web site
Phatak, S.C. and Diaz-Perez, J.C. 2007. Managing pests with cover crops. In Clark, A. (ed.). Managing Cover Crops Profitably. 3rd ed. Handbook 9. Sustainable Agriculture Research and Education Program, College Park, Maryland. p. 2533.
Smith, R.G., Atwood, L.W., and Warren, N.C. 2014. Increased productivity of a cover crop mixture is not associated with enhanced agroecosystem services. PLoS ONE 9:e97351.
Snapp, S.S., Swinton, S.M., Labarta, R., Mutch, D., Black, J.R., Leep, R., Nyiraneza, J., and O'Neil, K. 2005. Evaluating cover crops for benefits, costs, and performance within cropping system niches. Agronomy Journal 97:322332.
Szumigalski, A.R. and Van Acker, R.C. 2006. Nitrogen yield and land use efficiency in annual sole crops and intercrops. Agronomy Journal 98:10301040.
Szumigalski, A.R. and Van Acker, R.C. 2008. Land equivalent ratios, light interception, and water use in annual intercrops in the presence or absence of in-crop herbicides. Agronomy Journal 100:11451154.
Tilman, D. 1999. The ecological consequences of changes in productivity in biodiversity: A search for general principles. Ecology 80:14551474.
Tremmel, D.C. and Bazzaz, F.A. 1993. How neighbor canopy architecture affects target plant performance. Ecology 74:21142124.
Wortman, S.E., Francis, C.A., and Lindquist, J.L. 2012. Cover crop mixtures for the western Corn Belt: Opportunities for increased productivity and stability. Agronomy Journal 104:699705.


Considering canopy architecture when planning cover crop mixtures

  • Randy L. Anderson (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed