Skip to main content Accessibility help
×
Home

Algorithme de fictitious play et cycles

  • Richard Baron (a1), Jacques Durieu (a1) and Philippe Solal (a1)

Résumé

Fudenberg et Kreps (1993), Young (1993), et Sela et Herreiner (1999) ont souligné l'insuffisance du critère de convergence en croyances du processus de Fictitious Play dans un cadre d'apprentissage des équilibres de Nash. En conséquence, nous choisissons d'étudier la convergence en straté gies du processus de Fictitious Play dans des jeux de coordination 2x2. Notre propos est de montrer que la convergence en stratégies de ce processus dépend de manière cruciale de la forme des croyances initiales des joueurs. Premièrement, lorsque les croyances initiales forment un profil de stratégies pures, nous établissons que la convergence en stratégies est certaine pour n'importe quelle catégorie de jeux de coordination. Deuxièmement, si les croyances initiales forment un profil de stratégies mixtes, le processus de Fictitious Play converge pour certaines catégories de jeux de coordination. Ainsi, nous caractérisons complètement les conditions assurant la convergence en stratégies.

Copyright

References

Hide All
Brown, G. (1951), “Iterative Solutions of Fictitious Play”, in Koopmans, T.C. (ed.), Activity Analysis of Production and Allocation, Wiley.
Foster, D. et Young, P. (1998), “On the Nonconvergence of Fictitious Play in Coordination Games”, Games and Economic Behavior, 25, pp.7991.
Fudenberg, D. et Kreps, D. (1993), “Learning Mixed Equilibria”, Games and Economic Behavior, 5, pp.305367.
Jordan, J. (1993), “Three Problems in Learning Mixed Strategy Equilibria”, Games and Economic Behavior, 5, pp.368386.
Milgrom, P. et Roberts, J. (1991), “Adaptive and Sophisticated Learning in Normal Form Games”, Games and Economic Behavior, 3, pp.82100.
Miyasawa, K. (1961), “On the convergence of the learning process in a 2 ᙮ 2 non-zero-sum two person game”, Research memorandum, 33, Princeton University.
Monderer, D. et Sela, A. (1997), “Fictitious Play and No-cycling Conditions”,Mimeo, University of Mannheim.
Monderer, D. et Sela, A. (1996), “A 2 ᙮2 Game without the Fictitious Play Property”, Games and Economic Behavior, 14, pp.144148.
Monderer, D. et Shapley, L. (1996), “Fictitious Play Property for Games with Identical InterestsJournal of Economic Theory, 68, pp.258265.
Robinson, J. (1951), “An Iterative Method of Solving a Game”, Annals of Mathematics, 54, pp.296301.
Sela, A. et Herreiner, D. (1999), “Fictitious Play in Coordination Games”, International Journal of Game Theory, 28, pp.189198.
Shapley, L. (1964), “Some Topics in Two-person Games”, in Dresher, M., Shapley, L., Tucker, A. (eds.), Advances in Game Theory, Princeton University Press, Princeton.
Sobel, J. (2000), “Economists’ Models of Learning”, Journal of Economic Theory, 94, pp.241262.
Young, P. (1993), “The Evolution of Conventions”, Econometrica, 61, pp.5784.
Walliser, B. (1998), “A Spectrum of Equilibrium Processes in GamesJournal of Evolutionary Economics, 8, pp.6787.

Keywords

Algorithme de fictitious play et cycles

  • Richard Baron (a1), Jacques Durieu (a1) and Philippe Solal (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.