We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Université de Picardie Jules Verne, Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRS-UMR 7352, 33 rue Saint Leu, 80039 Amiens Cedex 01, France. fabien.durand@u-picardie.fr
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
[1]
Allouche, J.-P., Rampersad, N. and
Shallit, J., Periodicity, repetitions, and
orbits of an automatic sequence. Theoret. Comput.
Sci.410 (2009)
2795–2803. Google Scholar
[2]
J.-P. Allouche and J.O. Shallit, Automatic
Sequences, Theory, Applications, Generalizations. Cambridge University Press
(2003).
[3]
Bell, J.P., Charlier, E., Fraenkel, A.S. and Rigo, M., A decision problem for ultimately
periodic sets in non-standard numeration systems.
Internat. J. Algebra Comput.9 (2009) 809–839.
Google Scholar
[4]
Cassaigne, J. and
Nicolas, F., Quelques propriétés des mots
substitutifs. Bull. Belg. Math. Soc. Simon
Stevin10 (2003)
661–676. Google Scholar
[5]
A. Cerný and J. Gruska, Modular trellises.
The Book of L, edited by G. Rozenberg and A. Salomaa. Springer-Verlag
(1986) 45–61.
[6]
A. Cobham, On the Hartmanis-Stearns problem
for a class of tag machines. In IEEE Conference Record of 1968 Ninth Annual
Symposium on Switching and Automata Theory. Also appeared as IBM Research
Technical Report RC-2178, August 23 (1968) 51–60.
[7]
Durand, F., A characterization of
substitutive sequences using return words. Discrete
Math.179 (1998)
89–101. Google Scholar
[8]
Durand, F., HD0L
ω-equivalence and periodicity problems in the primitive case (To the
memory of G. Rauzy). J. Unif. Distrib.
Theory7 (2012) 199–215.
Google Scholar
[9]
Durand, F. and Rigo, M., Multidimensional extension of the
Morse-Hedlund theorem. Eur. J. Comb.34 (2013)
391–409. Google Scholar
[10]
Harju, T. and Linna, M., On the periodicity of morphisms
on free monoids. RAIRO ITA20 (1986) 47–54.
Google Scholar
[11]
Honkala, J., A decision method for the
recognizability of sets defined by number systems. RAIRO
ITA20 (1986)
395–403. Google Scholar
[12]
Honkala, J., Cancellation and periodicity
properties of iterated morphisms. Theoret. Comput.
Sci.391 (2008) 61–64.
Google Scholar
[13]
Honkala, J., On the simplification of
infinite morphic words. Theoret. Comput.
Sci.410 (2009)
997–1000. Google Scholar
[14]
Honkala, J. and Rigo, M., Decidability questions related to
abstract numeration systems. Discrete
Math.285 (2004)
329–333. Google Scholar
[15]
R.A. Horn and C.R. Johnson, Matrix
analysis. Cambridge University Press (1990).
[16]
Lecomte, P. and Rigo, M., Abstract numeration systems. In
Combinatorics, automata and number theory, Cambridge Univ.
Press. Encyclopedia Math. Appl.135 (2010)
108–162. Google Scholar
[17]
J. Leroux, A polynomial time presburger criterion
and synthesis for number decision diagrams. In 20th IEEE Symposium on Logic In
Computer Science (LICS 2005), IEEE Comput. Soc. (2005)
147–156.
[18]
D. Lind and B. Marcus, An Introduction to
Symbolic Dynamics and Coding. Cambridge University Press (1995).
[19]
Maes, A. and Rigo, M., More on generalized automatic
sequences. J. Autom. Lang. Comb.7 (2002) 351–376.
Google Scholar
[20]
I. Mitrofanov, A proof for the decidability of
HD0L ultimate periodicity. arXiv:1110.4780 (2011).
[21]
Muchnik, A., The definable criterion for
definability in Presburger arithmetic and its applications.
Theoret. Comput. Sci.290 (2003)
1433–1444. Google Scholar
[22]
Pansiot, J.-J., Hiérarchie et fermeture de
certaines classes de tag-systèmes. Acta
Informatica20 (1983)
179–196. Google Scholar
[23]
J.-J. Pansiot, Complexité des facteurs des mots
infinis engendrés par morphismes itérés. In ICALP84, Lect. Notes
Comput. Sci. Vol. 172, edited by J. Paredaens. Springer-Verlag (1984) 380–389.
[24]
Pansiot, J.-J., Decidability of periodicity for
infinite words. RAIRO ITA20 (1986) 43–46.
Google Scholar
[25]
Priebe, N., Towards a characterization of
self-similar tilings in terms of derived Voronoĭ tessellations.
Geom. Dedicata79 (2000)
239–265. Google Scholar
[26]
Priebe, N. and Solomyak, B., Characterization of planar
pseudo-self-similar tilings. Discrete Comput.
Geom.26 (2001)
289–306. Google Scholar
[27]
M. Queffélec, Substitution dynamical
systems–spectral analysis. In Lect. Notes Math., Vol. 1294.
Springer-Verlag (1987).
[28]
O. Salon, Suites automatiques à multi-indices. In
Séminaire de Théorie des Nombres de Bordeaux (1986-1987) 4.01–4.27.
[29]
Salon, O., Suites automatiques à
multi-indices et algébricité. C. R. Acad. Sci.
Paris305 (1987)
501–504. Google Scholar