No CrossRef data available.
Article contents
The critical exponent of the Arshon words
Published online by Cambridge University Press: 11 February 2010
Abstract
Generalizing the results of Thue (for n = 2) [Norske Vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67] and of Klepinin and Sukhanov (for n = 3) [Discrete Appl. Math. 114 (2001) 155–169], we prove that for all n ≥ 2, the critical exponent of the Arshon word of order n is given by (3n–2)/(2n–2), and this exponent is attained at position 1.
Keywords
- Type
- Research Article
- Information
- RAIRO - Theoretical Informatics and Applications , Volume 44 , Issue 1: Special issue dedicated to the 12th "Journées Montoises d'Informatique Théorique" , January 2010 , pp. 139 - 150
- Copyright
- © EDP Sciences, 2010
References
Arshon, S.E., A proof of the existence of infinite asymmetric sequences on n symbols.
Matematicheskoe Prosveshchenie (Mathematical Education)
2 (1935) 24–33 (in Russian). Available electronically at http://ilib.mccme.ru/djvu/mp1/mp1-2.htm.
Arshon, S.E., A proof of the existence of infinite asymmetric sequences on n symbols.
Mat. Sb.
2 (1937) 769–779 (in Russian, with French abstract).
J. Berstel, Axel Thue's papers on repetitions in words: a translation. Publications du Laboratoire de Combinatoire et d'Informatique Mathématique 20, Université du Québec à Montréal (1995).
Currie, J.D., No iterated morphism generates any Arshon sequence of odd order.
Discrete Math.
259 (2002) 277–283.
CrossRef
S. Kitaev, Symbolic sequences, crucial words and iterations of a morphism. Ph.D. thesis, Göteborg, Sweden (2000).
Kitaev, S., There are no iterative morphisms that define the Arshon sequence and the σ-sequence.
J. Autom. Lang. Comb.
8 (2003) 43–50.
Klepinin, A.V. and Sukhanov, E.V., On combinatorial properties of the Arshon sequence.
Discrete Appl. Math.
114 (2001) 155–169.
CrossRef
Séébold, P., About some overlap-free morphisms on a n-letter alphabet.
J. Autom. Lang. Comb.
7 (2002) 579–597.
Séébold, P., On some generalizations of the Thue–Morse morphism.
Theoret. Comput. Sci.
292 (2003) 283–298.
CrossRef
Thue, A., Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen.
Norske Vid. Selsk. Skr. Mat. Nat. Kl.
1 (1912) 1–67.
Vilenkin, N.Ya., Formulas on cardboard.
Priroda
6 (1991) 95–104 (in Russian). English summary available at http://www.ams.org/mathscinet/index.html, review no. MR1143732.
- 2
- Cited by