Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-k9l4c Total loading time: 0.427 Render date: 2023-02-04T22:00:34.114Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

An introduction to quantum annealing

Published online by Cambridge University Press:  15 March 2011

Diego de Falco
Affiliation:
Dipartimento di Scienze dell'Informazione Università degli Studi di Milano, via Comelico 39/41, 20135 Milano, Italy; tamascelli@dsi.unimi.it
Dario Tamascelli
Affiliation:
Dipartimento di Scienze dell'Informazione Università degli Studi di Milano, via Comelico 39/41, 20135 Milano, Italy; tamascelli@dsi.unimi.it
Get access

Abstract

Quantum annealing, or quantum stochastic optimization, is a classical randomized algorithm which provides good heuristics for the solution of hard optimization problems. The algorithm, suggested by the behaviour of quantum systems, is an example of proficuous cross contamination between classical and quantum computer science. In this survey paper we illustrate how hard combinatorial problems are tackled by quantum computation and present some examples of the heuristics provided by quantum annealing. We also present preliminary results about the application of quantum dissipation (as an alternative to imaginary time evolution) to the task of driving a quantum system toward its state of lowest energy.

Type
Research Article
Copyright
© EDP Sciences, 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aharonov, D. et al., Adiabatic quantum computation is equivalent to standard quantum computation. SIAM J. Comput. 37 (2007) 166. CrossRef
Albeverio, S., Hoeg-Krohn, R. and Streit, L., Energy forms, Hamiltonians and distorted Brownian paths. J. Math. Phys. 18 (1977) 907917. CrossRef
B. Altshuler, H. Krovi and J. Roland, Anderson localization casts clouds over adiabatic quantum optimization. arXiv:0912.0746v1 (2009).
Amara, P., Hsu, D. and Straub, J., Global minimum searches using an approximate solution of the imaginary time Schrödinger equation. J. Chem. Phys. 97 (1993) 67156721. CrossRef
A. Ambainis and O. Regev, An elementary proof of the quantum adiabatic theorem. arXiv:quant-ph/0411152 (2004).
M.H.S. Amin and V. Choi. First order quantum phase transition in adiabatic quantum computation. arXiv:quant-ph/0904.1387v3 (2009).
Anderson, P., Absence of diffusion in certain random lattices. Phys. Rev. 109 (1958) 14921505. CrossRef
Apolloni, B., Carvalho, C. and de Falco, D., Quantum stochastic optimization. Stoc. Proc. Appl. 33 (1989) 223244. CrossRef
B. Apolloni, N. Cesa-Bianchi and D. de Falco, A numerical implementation of Quantum Annealing, in Stochastic Processes, Physics and Geometry, Proceedings of the Ascona/Locarno Conference, 4–9 July 1988. Albeverio et al., Eds. World Scientific (1990), 97–111.
Battaglia, D., Santoro, G., Stella, L., Tosatti, E. and Zagordi, O., Deterministic and stochastic quantum annealing approaches. Lecture Notes in Computer Physics 206 (2005) 171206. CrossRef
Bernstein, E. and Vazirani, U., Quantum complexity theory. SIAM J. Comput. 26 (1997) 14111473. CrossRef
Bloch, F., Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52 (1929) 555600. CrossRef
Born, M. and Fock, V., Beweis des Adiabatensatzes. Z. Phys. A 51 (1928) 165. CrossRef
S. Bravyi, Efficient algorithm for a quantum analogue of 2-sat. arXiV:quant-ph/0602108 (2006).
H.P. Breuer and F. Petruccione, The theory of open quantum systems. Oxford University Press, New York (2002).
de Falco, D. and Tamascelli, D., Speed and entropy of an interacting continuous time quantum walk. J. Phys. A 39 (2006) 58735895. CrossRef
de Falco, D. and Tamascelli, D., Quantum annealing and the Schrödinger-Langevin-Kostin equation. Phys. Rev. A 79 (2009) 012315. CrossRef
D. de Falco, E. Pertoso and D. Tamascelli, Dissipative quantum annealing, in Proceedings of the 29th Conference on Quantum Probability and Related Topics. World Scientific (2009) (in press).
Deutsch, D., Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400 (1985) 97117. CrossRef
Eleuterio, S. and Vilela Mendes, S., Stochastic ground-state processes. Phys. Rev. B 50 (1994) 50355040. CrossRef
E. Farhi et al., Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106v1 (2000).
E. Farhi et al., A quantum adiabatic evolution algorithm applied to random instances of an NP-Complete problem. Science (2001) 292.
Feynman, R., Simulating physics with computers. Int. J. Theor. Phys. 21 (1982) 467488. CrossRef
Feynman, R.P., Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20 (1948) 367387. CrossRef
Ford, G., Kac, M. and Mazur, P., Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys. 6 (1965) 504515. CrossRef
Gregor, T. and Car, R., Minimization of the potential energy surface of Lennard-Jones clusters by quantum optimization. Chem. Rev. Lett. 412 (2005) 125130.
Griffin, J.J. and Kan, K.-K., Colliding heavy ions: Nuclei as dynamical fluids. Rev. Mod. Phys. 48 (1976) 467477. CrossRef
L. Grover, A fast quantum-mechanical algorithm for database search, in Proc. 28th Annual ACM Symposium on the Theory of Computing. ACM, New York (1996).
Grover, L., From Schrödinger equation to the quantum search algorithm. Am. J. Phys. 69 (2001) 769777. CrossRef
Hogg, T., Adiabatic quantum computing for random satisfiability problems. Phys. Rev. A 67 (2003) 022314. CrossRef
Johnson, D.S., Aragon, C.R., McGeoch, L.A. and Shevon, C., Optimization by simulated annealing: An experimental evaluation; part i, graph partitioning. Oper. Res. 37 (1989) 865892. CrossRef
Jona-Lasinio, G., Martinelli, F. and Scoppola, E., New approach to the semiclassical limit of quantum mechanics. i. Multiple tunnelling in one dimension. Commun. Math. Phys. 80 (1981) 223254. CrossRef
M. Kac, On distributions of certain Wiener functionals. Trans. Am. Math. Soc. (1949) 1–13.
Kempe, J., Kitaev, A. and Regev, O., The complexity of the local Hamiltonian problem. SIAM J. Comput. 35 (2006) 10701097. CrossRef
Kirkpatrik, S., Gelatt Jr, C.D.. and M.P. Vecchi, Optimization by simulated annealing. Science 220 (1983) 671680. CrossRef
Kostin, M., On the Schrödinger-Langevin equation. J. Chem. Phys. 57 (1972) 35893591. CrossRef
Kostin, M., Friction and dissipative phenomena in quantum mechanics. J. Statist. Phys. 12 (1975) 145151. CrossRef
K. Kurihara, S. Tanaka and S. Miyashita, Quantum annealing for clustering. arXiv:quant-ph/09053527v2 (2009).
C. Laumann et al., On product, generic and random generic quantum satisfiability. arXiv:quant-ph/0910.2058v1 (2009).
C. Laumann et al., Phase transitions and random quantum satisfiability. arXiv:quant-ph/0903.1904v1 (2009).
A. Messiah, Quantum Mechanics. John Wiley and Sons (1958).
Morita, S. and Nishimori, H., Mathematical foundations of quantum annealing. J. Math. Phys. 49 (2008) 125210. CrossRef
C. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity. Dover New York (1998).
B. Reichardt, The quantum adiabatic optimization algorithm and local minima, in Proc. 36th STOC (2004) 502.
Santoro, G. and Tosatti, E., Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A 39 (2006) R393R431. CrossRef
Santoro, G. and Tosatti, E., Optimization using quantum mechanics: quantum annealing through adiabatic evolution. J. Phys. A: Math. Theor. 41 (2008) 209801.
Shor, P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26 (1997) 1484. CrossRef
Stella, L., Santoro, G. and Tosatti, E., Optimization by quantum annealing: Lessons from simple cases. Phys. Rev. B 72 (2005) 014303. CrossRef
W. van Dam, M. Mosca and U. Vazirani, How powerful is adiabatic quantum computation. Proc. FOCS '01 (2001).
J. Watrous, Succint quantum proofs for properties of finite groups, in Proc. IEEE FOCS (2000) 537–546.
Young, A.P., Knysh, S. and Smelyanskiy, V.N.. Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. Phys. Rev. Lett. 101 (2008) 170503. CrossRef
J. Yuen-Zhou et al., Time-dependent density functional theory for open quantum systems with unitary propagation. arXiv:cond-mat.mtrl-sci/0902.4505v3 (2009).
Zener, C., A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. A 145 (1934) 523529. CrossRef
Žnidari, M. and Horvat, M., Exponential complexity of an adiabatic algorithm for an np-complete problem. Phys. Rev. A 73 (2006) 022329. CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An introduction to quantum annealing
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

An introduction to quantum annealing
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

An introduction to quantum annealing
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *