Skip to main content Accessibility help
×
Home

Le syndrome hématopoïétique induit par une irradiation accidentelle : évaluation et traitements possibles

  • J.-M. Bertho (a1)

Abstract

Le syndrome hématopoïétique induit par une irradiation accidentelle reste difficile à traiter, essentiellement du fait de l’hétérogénéité de l’irradiation. La conséquence est qu’il y a toujours un territoire médullaire partiellement protégé de l’irradiation. Le choix d’une stratégie thérapeutique va dépendre essentiellement de l’évaluation des dommages radio-induits à la moelle osseuse, telle qu’elle peut être faite à partir de différents bio-indicateurs de dose ou de dommages comme le suivi de la concentration sanguine de Flt3 ligand. Les options thérapeutiques restent limitées à la greffe de cellules souches hématopoïétiques ou aux traitements de soutien. Récemment, de nouvelles approches de thérapie cellulaire autologue ont été proposées, et ont apporté un éclairage nouveau sur le syndrome de défaillance multi-viscérale radio-induit. D’autres résultats récents du laboratoire montrent que parmi les choix possibles, la stimulation de l’hématopoïèse résiduelle par l’injection de cytokines telles que le G-CSF reste l’une des options thérapeutiques les plus intéressantes. Ces donnés nouvelles soulignent l’importance de la notion d’hématopoïèse résiduelle, mais aussi le fait que les mécanismes de régulation de l’hématopoïèse résiduelle après irradiation restent mal connus.

Copyright

References

Hide All
[1] AIEA (2001) Cytogenetic analysis for dose assessment: A manual. Technical reports series N° 405, AIEA, Vienna.
[2] Asano S. (2005) Multi-organ involvement: Lessons from the experience of one victim of the Tokai-mura criticality accident, Br. J. Radiol. 27(sup), 9-12.
[3] Baranov, A.E., Selidovkin, G.D., Butturini, A., Gale, R.P. (1994) Hematopoietic recovery after 10 Gy acute total body radiation, Blood 83, 596-599.
[4] Barrett, A., Jacobs, A., Kohn, J., Raymond, J., Powles, R.L. (1982) Changes in serum amylase and its isoenzymes after whole body irradiation, Br. Med. J. 285, 170-171.
[5] Bertho, J.M., Frick, J., Demarquay, C., Lauby, A., Mathieu, E., Dudoignon, N., Jacquet, N., Chau, Q., Joubert, C., Chapel, A., Lopez, M., Aigueperse, J., Gorin, N.C., Gourmelon, P., Thierry, D. (2002) Reinjection of ex vivo expanded primate bone marrow mononuclear cells strongly reduces radiation-induced aplasia, J. Hematother. Stem Cell Res. 11, 549-564.
[6] Bertho, J.M., Mathieu, E., Lauby, A., Frick, J., Demarquay, C., Gourmelon, P., Gorin, N.C., Thierry, D. (2004) Feasibility and limits of bone marrow mononuclear cell expansion following irradiation, Int. J. Radiat. Biol. 80, 73-81.
[7] Bertho, J.M., Prat, M., Frick, J., Demarquay, C., Gaugler, M.H., Dudoignon, N., Clairand, I., Chapel, A., Gorin, N.C., Thierry, D., Gourmelon, P. (2005a) Application of autologous hematopoietic cell therapy to a non human primate model of heterogeneous high dose irradiation, Radiat. Res. 163, 557-570.
[8] Bertho, J.M., Frick, J., Prat, M., Demarquay, C., Dudoignon, N., Trompier, F., Gorin, N.C., Thierry, D., Gourmelon, P. (2005b) Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non human primate model, Int. J. Radiat. Oncol. Biol. Phys. 63, 911-920.
[9] Cristy, M. (1981) Active bone marrow distribution as a function of age in humans, Phys. Med. Biol. 26, 389-400.
[10] Dainiak N. (2005) The evolving role of haematopoietic cell transplantation in radiation injury: potential and limitations, Br. J. Haematol. 27(sup), 169-174.
[11] Densow D., Kindler H., Baranov A.E., Tibken B., Hofer E.P., Fliedner T.M. (1997) Criteria for the selection of radiation accident victims for stem cell transplantation, Stem Cells 15(sup2), 287-297.
[12] Dolphin G.W. (1969) Biological dosimetry with particular reference to chromosome aberration analysis, A review of methods, Handling of radiation accidents, pp. 215-224. AIEA, Vienne.
[13] Drouet, M., Mathieu, J., Grenier, N., Multon, E., Sotto, J.J., Herodin, F. (1999) The reduction of in vitro radiation-induced fas-related apoptosis in CD34+ progenitor cells by SCF, Flt-3 ligand, TPO, and IL-3 in combination resulted in CD34+ cell proliferation and differentiation, Stem Cells 17, 273-285.
[14] Dublineau, I., Dudoignon, N., Monti, P., Combes, O., Wysocki, J., Grison, S., Baudelin, C., Griffiths, N.M., Scanff, P. (2004) Screening of a large panel of gastrointestinal peptide plasma levels is not adaptated for the evaluation of digestive damage following irradiation, Can. J. Physiol. Pharmacol. 82, 103-113.
[15] Fliedner T.M., Friesecke I., Beyrer K. (Eds) (2001) The medical management of radiation accidents, manual on the acute radiation syndrome. British Institute of Radiology, London.
[16] Hérodin, F., Drouet, M. (2002) Autologous cell therapy as a new approach to treatment of radiation-induced bone marrow aplasia: preliminary study in a baboon model, Can. J. Physiol. Pharmacol. 80, 710-716.
[17] Hoffman, R. (1999) Progress in the development of systems for in vitro expansion of human hematopoietic stem cells, Curr. Opin. Hematol. 6, 184-191.
[18] Jaroscak, J., Goltry, K., Smith, A., Waters-Pick, B., Martin, P.L., Driscoll, T.A., Howrey, R., Chao, N., Douville, J., Burhop, S., Fu, P., Kurtzberg, J. (2003) Augmentation of umbilical cord blood transplantation with ex vivo-expanded umbilical cord blood cells: Results of a phase I trial using the AastromReplicell system, Blood 101, 5061-5067.
[19] Jouet J.P., Gorin N.C., Gourmelon P. (2003) Gestion médicale des victimes d’irradiation lors d’un accident nucléaire ou d’un acte de malveillance de grande ampleur, Les entretiens de Bichat, tables rondes thérapeutique, pp. 144-147. Expansion scientifique française, Paris.
[20] Kanda, R., Minamihisamatsu, M., Hayata, I. (2002) Dynamic analysis of chromosome aberrations in three victims of the Tokai-Mura criticality accident, Int. J. Radiat. Biol. 78, 857-862.
[21] Konchalovsky M.V., Barabov A.E., Kolganov A.V. (2005) Multiple organ involvement and failure: Selected Russian radiation accident cases re-visited, Br. J. Radiol. 27(sup), 26-29.
[22] Lutgens, L.C., Deutz, N., Granzier-Peeters, M., Beets-Tan, R., De Ruysscher, D., Gueulette, J., Cleutjens, J., Berger, M., Wouters, B., von Meyenfeldt, M., Lambin, P. (2004) Plasma citrulline concentration: A surrogate end point for radiation-induced mucosal atrophy of the small bowel. A feasibility study in 23 patients, Int. J. Radiat. Oncol. Biol. Phys. 60, 275-285.
[23] Mac Vittie T.J., Farese A.M. (1995) Experimental approaches for therapeutic treatment of radiation-induced haemopoietic injury, Radiation toxicology, bone marrow and leukemia (J.H. Hendry et B.I. Lord, Eds), pp. 141-193. Taylor & Francis, Londres.
[24] Moulder, J.E. (2004) Post-irradiation approaches to the treatment of radiation injuries in the context of radiological terrorism and radiation accidents: a review, Int. J. Radiat. Biol. 80, 3-10.
[25] Nagayama, H., Misawa, K., Tanaka, H., Ooi, J., Iseki, T., Tojo, A., Tani, K., Yamada, Y., Kodo, H., Takahashi, T.A., Yamashita, N., Shimazaki, S., Asano, S. (2002) Transient haematopoietic stem cell rescue using umbilical cord blood for a lethally irradiated nuclear accident victim, Bone Marrow Transpl. 29, 197-204.
[26] Paquette, R.L., Dergham, S.T., Karpf, E., Wang, H.J., Slamon, D.J., Souza, L., Glaspy, J.A. (2000) Ex vivo expanded unselected peripheral blood: Progenitor cells reduce posttransplantation neutropenia, thrombocytopenia, and anemia in patients with breast cancer, Blood 96, 2385-2390.
[27] Parmentier N.C., Nénot J.C., Jammet H.J. (1980) A dosimetric study of the Belgian (1965) and Italian (1975) accidents, The medical basis for radiation accident preparedness (K.F. Hübner, S.A. Fry, Eds) pp. 105-112. Elsevier, Amsterdam.
[28] Pouget, J.P., Laurent, C., Delbos, M., Benderitter, M., Clairand, I., Trompier, F., Stephanazzi, J., Carsin, H., Lambert, F., Voisin, P., Gourmelon, P. (2004) PCC-FISH in skin fibroblasts for local dose assessment: biodosimetric analysis of a victim of the Georgian radiological accident, Radiat. Res. 162, 365-376.
[29] Prat, M., Demarquay, C., Frick, J., Thierry, D., Gorin, N.C., Bertho, J.M. (2005) Radiation induced increase in plasma Flt3-ligand concentration in mice: evidence for the implication of several cell types, Radiat. Res. 163, 408-417.
[30] Prat, M., Frick, J., Laporte, J.-Ph., Thierry, D., Gorin, N.C., Bertho, J.M. (2006) Kinetics of plasma Flt3 ligand concentration in haematopoietic stem cell transplanted patients, Leuk. Lymph. 47, 77-80.
[31] Ringden, O.T.H., Le Blanc, K., Remberger, M. (2005) Granulocyte and granulocyte-macrophage colony-stimulating factors in allografts: Uses, misuses, misconceptions and future applications, Exp. Hematol. 33, 505-512.
[32] Roy L., Bertho J.M., Souidi M., Vozenin M.C., Voisin Ph., Benderitter M. (2005) Biochemical approach to prediction of multiple organ dynsfunction syndrome, Br. J. Haematol. 27(sup), 146-151.
[33] Sasaki, M.S., Miyata, H. (1968) Biological dosimetry in atomic bomb survivors, Nature 220, 1189-1193.
[34] Silini G., Gouskova A. (1991) Biological dosimetry at Chernobyl, New horizons in biological dosimetry, (B.L. Gledhill, F. Mauro, Eds) pp. 129-144. Wiley-Liss, New York.

Keywords

Le syndrome hématopoïétique induit par une irradiation accidentelle : évaluation et traitements possibles

  • J.-M. Bertho (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed