Skip to main content Accessibility help
×
Home

Feasibility study of a new platform based on the Case-Based Reasoning principles to efficiently search and store voxel phantoms

  • J. Henriet (a1), J. Farah (a2), B. Chebel-Morello (a3), M. Bopp (a1), D. Broggio (a2) and L. Makovicka (a1)...

Abstract

In case of accidental exposure to radiation, it is necessary to establish as soon as possible a dosimetry report for each victim. In most cases, this report is based on medical images of the victim, enabling the construction of a personalized realistic numerical model, also called a voxel phantom. Unfortunately it is not always possible to perform the medical imaging of the victim since the technology may be unavailable or to avoid additional exposure to radiation. In such cases, the commonly used method is to represent the victim with a numerical model like the “Reference Man”, a voxelized phantom representative of the average male individual. The treatment accuracy depends on the diagnosis precision and, consequently, on the similarity of the phantom and/to the victim. A precise dosimetry evaluation requires a personalised and realistic phantom whose biometric characteristics match the victim; such model is often unavailable. The Case-Based Reasoning (CBR) is a problem solving method for the conception of intelligent systems. It imitates the analysis, understanding and reconstruction of the human intelligence. The ReEPh project (Research of Equivalent Phantom) proposes to use the CBR principles to retrieve from a set of phantoms, the most adapted one to the irradiated victim. For this study, the ReEPh platform retrieves, stores and compares existing phantoms to a victim. A graphic interface enables the user to compare victim’s characteristics to the ones of the most similar phantoms available in the database. This defines a similarity index presenting the equivalence between the victim and the suggested phantom. Moreover, a confidence index is also assessed to define the uncertainty implied by the RaPC choice procedure.

Copyright

References

Hide All
[1]Aamodt A. (2004) Knowledge-Intensive Case-Based Reasoning and Sustained Learning, in Proceedings of the 9th European Conference on Artificial Intelligence, ECCBR’04, Lecture Notes in Artificial Intelligence, Springer, pp. 1–15.
[2]Broggio, D., Zhang, B., de Carlan, L., Desbée, A., Lamart, S., le Guen, B., Bailloeuil, C.Franck, D. (2009) Analytical and Monte Carlo assessment of activity and local dose after a wound contamination by activation products, Health Phys. 96, 155163.
[3]Caon, M., Bibbo, G., Pattison, J. (1999) An EGS-4ready tomographic computational model of 14-year-old female torso for calculating organ doses from CT examinations, Phys. Med. Biol. 44, 22132225.
[4]Clairand I. (1999) Développement de nouveaux modèles physiques dédiés à la dosimétrie interne par l’utilisation du code de Monte Carlo EGS, Thèse de l’Université Paul Sabatier, Toulouse.
[5]Clairand, I., Bouchet, L.G., Ricard, M., Durigon, M., Di Paola, M.Aubert, B. (2000) Improvement of internal dose calculations using mathematical models of different adult heights, Phys. Med. Biol. 45, 27712785.
[6]Clairand, I., Huet, C., Trompier, F.Bottollier-Depois, J.-F. (2008) Physical dosimetric reconstruction of a radiological accident due to gammagraphy equipment that occurred in Dakar and Abidjan in summer 2006, Rad. Measur. 43, 698703.
[7]Cristy M., Eckerman K.F. (1987) Specific absorbed fractions of energy at various ages from internal photons sources, ORNL Report/TM-8381, Oak Ridge, Oak Ridge National Laboratory.
[8]de Carlan, L., Aubineau-Lanièce, I., Lemosquet, A., Borissov, N., Jourdain, J.R., Jeanbourquin, D., Le Guen, B.Franck, D. (2003) Application of new imaging and calculation techniques to activity and dose assessment in the case of a 106Ru contaminated wound, Rad. Prot. Dosim. 105, 219223.
[9]Dimbylow, P.J. (1998) Induced current densities from low-frequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body, Phys. Med. Biol. 43, 221–.
[10]Easterley, C.E., Allgood, G., Eckerman, K.F., Knee, B., Maston, M., MacNeilly, G., Munro, J., Munro, N., Toerite, R., Van Hoy, B. (1998) The virtual human: a diagnostic tool for human studies and health effects in the 21st century, SPIE Int. Soc. Opt. Engineer. 3253, 150154.
[11]Fusch B., Lieber J., Mille A., Napoli A. (2006) Une première formalisation de la phase d’élaboration du raisonnement à partir de cas, in Actes du 14e atelier du raisonnement à partir de cas, Besançon, France..
[12]Huet, C., Lemosquet, A., Clairand, I., Rioual, J.B., Franck, D., de Carlan, L., Aubineau-Lanièce, I.Bottollier-Depois, J.F. (2009) SESAME: a software tool for the numerical dosimetric reconstruction of radiological accidents involving external sources and its application to the accident in Chile in December 2005, Health Phys. 96, 7683.
[13]ICRP Publication 89 (2002) Basic anatomical and physiological data for use in radiological protection, Ann. ICRP 32(3-4).
[14]ICRU (1992) Phantoms and Computational Models in Therapy, Diagnosis and Protection, in International Commission on Radiation Units and Measurements, Report 48.
[15]Jacob, S.W. (1999) The complete visible man: the complete high resolution male and female anatomical datasets from the visible human project, J. Am. Med. Assoc. 281, 765.
[16]Kolodner J. (1993) Case-Based Reasoning, Morgan Kaufmann Publishers.
[17]Kramer R., Zankl M., Williams G., Dexter G. (1982) The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods. Part I: the male (Adam) and female (Eva) adult mathematical phantoms, Report GSF-Bericht S-885, München, GSF.
[18]Kramer, R., Vieira, J.W., Khoury, H.J., Lima, F.R.A.Fülle, D. (2003) All About MAX: A Male Adult VoXel phantom for Monte Carlo Calculations in Radiation Protection Dosimetry, Phys. Med. Biol. 48, 12391269.
[19]Kramer, R., Khoury, H.J., Vieira, J.W., Loureiro, E.C.M., Lima, V.J.M., Lima, F.R.A.Hoff, G. (2004) All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry, Phys. Med. Biol. 49, 52035216.
[20]Lemosquet, A., de Carlan, L.Clairand, I. (2003) Voxel anthropomorphics phantoms: review of models used for inionizing radiation protection, Radioprotection 38, 509528.
[21]Lorin de la Grandmaison, G., Clairand, I.Durigon, M. (2001) Organ weight in 684 adult autopsies: new tables for a Caucasoid population, Forensic. Sci. Intern. 119, 149154.
[22]Makovicka, L., Vasseur, A., Sauget, M., Martin, E., Gschwind, R., Henriet, J.Salomon, M. (2009) The future of new calculation concepts in dosimetry based on the Monte Carlo methods, Radioprotection 44, 7788.
[23]Mille A. (1999) Tutorial CBR : Etat de l’art de raisonnement à partir de cas, Plate-forme AFIA’99, Palaiseau, France.
[24]Mille A., Fuchs B., Herbeaux O. (1996) A unifying Framework for Adaptation in Case-Based Reasoning, in Workshop on Adaptation in Case-Based Reasoning, ECAI’96, Budapest, Hungary, pp. 22–28.
[25]Padilla, L., Lee, C., Milner, R., Shahlaee, A.Bolch, W.E. (2008) Canine Anatomic Phantom for Preclinical Dosimetry in Internal Emitter Therapy, J. Nucl. Med. 49, 446452.
[26]Rasovska I. (2006) Contribution à une méthode de capitalisation des connaissances basée sur le raisonnement à partir de cas : Application au diagnostic dans une plateforme d’e-maintenance, Thèse de l’Université de Franche-Comté, Besançon, France
[27]Snyder W.S., Ford M.R., Warner G.G. (1978) Estimates of absorbed fractions for mono-energetic photons sources uniformy distributed in various organs of a heterogeneous phantom, MIRD pamphlet number 5 revised, New York, The Society of Nuclear Medicine.
[28]Tanaka, G.I., Kawamura, H.Nakahara, Y. (1979) Reference Japanese man-I. Mass of organs and other characteristics of normal Japanese, Health Phys. 36, 333346.
[29]Xu, X.G., Chao, T.C.Bozkurt, A. (2000) VIP MAN, an imaged-based wholebody adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations, Health Phys. 78, 476486.
[30]Zaidi, H., Xu, X.G. (2007) Computational anthropomorphic models of the human anatomy: the path to realistic Monte Carlo modelling in radiological sciences, Annu. Rev. Biomed. Eng. 9, 471500.
[31]Zankl, M., Viet, R., Williams, G., Schneider, K., Fendel, H., Petoussi, N., Drexler, (1988) The construction of computer tomographic phantoms and their application in radiology and radiation protection, Rad. Environm. Biophys. 27, 153164.
[32]Zankl, M., Panzer, W., Petoussi-Hens, N.Drexler, G. (1995) Organ doses for children from computed tomographic examinations, Rad. Prot. Dosim. 57, 393396.
[33]Zankl, M.Wittmann, A. (2001) The adult male voxel model ‘Golem’ segmented from whole-body CT patient data, Rad. Environm. Biophys. 40, 153162.
[34]Zubal, I.G., Harrell, C.R., Smith, E.O., Rattner, Z., Gindi, G.Hoffer, P.B. (1994) Computerized three dimensional segmented human anatomy, Med. Phys. 21, 299302.

Keywords

Feasibility study of a new platform based on the Case-Based Reasoning principles to efficiently search and store voxel phantoms

  • J. Henriet (a1), J. Farah (a2), B. Chebel-Morello (a3), M. Bopp (a1), D. Broggio (a2) and L. Makovicka (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed