Skip to main content Accessibility help
×
Home

Bark, a suitable biosorbent for the removal of uranium from wastewater – From laboratory to industry

  • L. Jauberty (a1) (a2), V. Gloaguen (a1), C. Astier (a1), P. Krausz (a1), V. Delpech (a1) (a2), A. Berland (a2), V. Granger (a2), I. Niort (a2), A. Royer (a2) and J.-L. Decossas (a2)...

Abstract

This paper shows that natural materials such as barks can successfully replace synthetic resins for industrial purposes. Evaluated in batch conditions, biosorption of uranium on suitably prepared Douglas fir barks took place in less than 10 min and appeared to be optimum at pH>4. The biosorption process of uranium (uranyl form UO \hbox{$_{\mathrm{\mathbf{2}}}^{\mathrm{\mathbf{2+}}}$} 2+2 ) was characterized in the optimal physico-chemical conditions and could be mathematically modeled as a Langmuir isotherm. With a maximum uranium specific uptake qmaxvalue of 1.16 meq.g-1 (138 mgU.g-1) it was found that the sorption capability of Douglas fir barks was at least five times higher for uranium than for other heavy metals such as lead. Adsorption of uranium contained in water leached from a former uranium mine was then monitored over a one-month period in a laboratory-scale chromatography column. The fixation capacity remained fairly constant throughout the whole testing period. Water radioactivity decreased from 1500 mBq.L-1 (0.12 mgU.L-1) to  <5 mBq.L-1(0.4 μ gU.L-1) at the column exit. This technology was successfully transferred and tested through a pilot project under industrial conditions with the support of AREVA NC.

Copyright

References

Hide All
[1] Adamson A.W. (1976) Physical chemistry of surfaces (J. Wiley & Sons, Ed.) New York, 1.
[2] AFNOR (2005) Mesure de la radioactivité dans l’environnement – eau : mesurage de l’activité et de la concentration de l’uranium dans l’eau par spectrométrie alpha.
[3]Al-Asheh, S.,Duvnjak, Z. (1998) Binary metal sorption by pine bark: study of equilibria and mechanisms, Separ. Sci. Technol. 33, 1303-1329.
[4]Aoyama, M.,Honma, S.,Kasai, A.,Iseda, Y.,Nakajima, A.,Sakaguchi, T. (1991) Uranium uptake by conifer leaves, Holzforschung 45, 75-77.
[5]Aoyama, M.,Seki, K.,Sensho, H.,Kasai, A. (1993) Adsorption of heavy metal ions by hardwood barks, Cellulose Chem. Technol. 27, 39-46.
[6]Deshkar, A.M.,Bokade, S.S.,Dara, S.S. (1990) Modified Hardwickia binata bark for adsorption of mercury (II) from water, Wat. Res. 24, 1011-1016.
[7] Desjardins R. (1988) Le traitement des eaux (École Polytechnique de Montréal, Ed.) Montréal, 366.
[8]Gaballah, I.,Goy, D.,Allain, E.,Kilbertus, G.,Thauront, J. (1997) Recovery of copper through decontamination of synthetic solutions using modified barks, Metall. Mater. Trans. B 28, 13-23.
[9]Gloaguen, V.,Morvan, H. (1997) Removal of heavy ions from aqueous solution by modified barks, J. Environ. Sci. Health A 32, 901-912.
[10] Haleem Khan, M.,Warwick, P.,Evans, N. (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid, Chemosphere 63, 1165-1169.
[11] Jansson-Charrier M., Guibal E., Surjous R., Le Cloirec P. (1995) Continuous removal of uranium by biosorption onto chitosan: application to an industrial effluent, in: Biohydrometallurgical processing (C.A. Jerez, T. Vargas, H. Toledo, J.V. Wiertz, Eds.) pp. 257-266, University of Chile, Santiago, Chile.
[12]Kumar, P.,Dara, S.S. (1980) Modified barks for scavenging toxic heavy metal ions, Ind. J. Environ. Health 22, 196-202.
[13]Martin-Dupont, F.,Gloaguen, V.,Granet, R.,Guilloton, M.,Krausz, P. (2004) Chemical modifications of Douglas fir bark, a lignocellulosic by-products - Enhancement of their lead (II) binding capacities, Separ. Sci. Technol. 39, 1-16.
[14] Martin-Dupont, F., Gloaguen, V., Granet, R., Guilloton, M., Morvan, H., Krausz, P. (2002) Heavy metal adsorption by crude coniferous barks: a modeling study, J. Environ. Sci. Health A 37, 1063-1073.
[15]Randall, J.,Berman, R.L.,Garrett, V.,Waiss, A.C. (1974) Use of bark to remove metal ions from waste solutions, Forest Prod. 24, 80-84.
[16] Schneider I.A.H., Rubio J. (1995) New trends in biosorption of heavy metals by freshwater macrophytes, in: Biohydrometallurgical processing (C.A. Jerez, T. Vargas, H. Toledo, J.V. Wiertz, Eds.) pp. 247-256, University of Chile, Santiago, Chile.
[17]Seki, K.,Saito, N.,Aoyama, M. (1997) Removal of heavy metal ions from solutions by coniferous barks, Wood Sci. Technol. 31, 441-447.
[18]Veglio, F.,Beolchini, F.,Gasbarro, A. (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp., Process Biochem. 32, 99-105.
[19]Volesky, B. (1986) Biosorbent materials, Biotechnol. Bioeng. Symp. 16, 121-126.
[20]Waiss, A.C. Jr.,Wiley, M.E.,Kuhnle, J.A.,Potter, A.L.,McCready, R.M. (1973) Adsorption of mercuric cation by tannins in agricultural residues, J. Environ. Qual. 2, 369-371.
[21] Weber W.J.P. (1972) Physicochemical processes for water quality control (J. Wiley & Sons, Ed.) New York, 200.

Keywords

Related content

Powered by UNSILO

Bark, a suitable biosorbent for the removal of uranium from wastewater – From laboratory to industry

  • L. Jauberty (a1) (a2), V. Gloaguen (a1), C. Astier (a1), P. Krausz (a1), V. Delpech (a1) (a2), A. Berland (a2), V. Granger (a2), I. Niort (a2), A. Royer (a2) and J.-L. Decossas (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.