Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T16:46:16.363Z Has data issue: false hasContentIssue false

Zinc Reduction as an Alternative Method for AMS Radiocarbon Dating: Process Optimization at Circe

Published online by Cambridge University Press:  18 July 2016

G Borriello
Affiliation:
Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
I Passariello
Affiliation:
Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
C Lubritto
Affiliation:
Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
N De Cesare
Affiliation:
Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
A D'Onofrio
Affiliation:
Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
F Terrasi
Affiliation:
Dipartimento di Scienze Ambientali, Via Vivaldi 43, 81100 Caserta, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The pretreatment of samples for radiocarbon measurements, transforming a variety of materials into graphite solid targets, represents a critical point in the accelerator mass spectrometry (AMS) procedure. We describe the new, state-of-the-art CIRCE AMS preparation laboratory, particularly the setup and optimization of an alternative method, the zinc reduction method, for graphite target production, compared to the more common hydrogen reduction method. Measured 14C values on standard and blank samples reduced via zinc reaction revealed mean background levels, accuracy, and sensitivity comparable to those obtained by our conventional hydrogen reaction lines. Zinc line reduction at the CIRCE laboratory represents an effective and powerful alternative to the conventional hydrogen reduction, ensuring higher sample throughput with lower costs at a comparable performance level.

Type
Articles
Copyright
Copyright © 2008 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear Instruments and Methods in Physics Research B 123(1–4):221–5.Google Scholar
Andersen, HH, Demortier, G. 2004. Editorial. Nuclear Instruments and Methods in Physics Research B 226(1–2):12.Google Scholar
Bertolini, T, Rubino, M, Lubritto, C, D'Onofrio, A, Marzaioli, F, Passariello, I, Terrasi, F. 2005. Optimized sample preparation for isotopic analyses of CO2 in air: systematic study of precision and accuracy dependence on driving variables during CO2 purification process. Journal of Mass Spectrometry 40(8):1104–8.Google Scholar
Bottinga, Y. 1969. Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochimica et Cosmochimica Acta 33(1):4964.CrossRefGoogle Scholar
Calzolai, G, Chiari, M, García Orellana, I, Lucarelli, F, Migliori, A, Nava, S, Taccetti, F. 2006. The new external beam facility for environmental studies at the Tandetron accelerator of LABEC. Nuclear Instruments and Methods in Physics Research B 249(1–2):928–31.Google Scholar
Druffel, ERM, Griffin, S, Hwang, J, Komada, T, Beaupre, SR, Druffel-Rodriguez, KC, Santos, GM, Southon, J. 2004. Variability of monthly radiocarbon during the 1760s in corals from the Galapagos Islands. Radiocarbon 46(2):627–31.Google Scholar
Fowler, AJ, Gillespie, R, Hedges, REM. 1986. Radiocarbon dating of sediments. Radiocarbon 28(2A):441–50.Google Scholar
Green, JW. 1963. Wood cellulose. In: Whistler, RL, editor. Methods in Carbohydrate Chemistry. New York: Academic Press. p 921.Google Scholar
Hoefs, J. 1987. Stable Isotope Geochemistry. 3rd edition. Berlin: Springer-Verlag. 241 p.CrossRefGoogle Scholar
Hua, Q, Jacobsen, GE, Zoppi, U, Lawson, EM, Williams, AA, Smith, AM, McGann, MJ. 2001. Progress in radiocarbon target preparation at the ANTARES AMS Centre. Radiocarbon 43(2A):275–82.Google Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, J, Peterson, LC, Alley, R, Sigman, DM. 1998. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391(6662):65–8.Google Scholar
Jull, AJT, Donahue, DJ, Hatheway, AL, Linick, TW, Toolin, LJ. 1986. Production of graphite targets by deposition from CO/H2 for precision accelerator 14C measurements. Radiocarbon 28(2A):191–7.Google Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.CrossRefGoogle ScholarPubMed
Lubritto, C, Rogalla, D, Rubino, M, Marzaioli, F, Passariello, I, Romano, M, Spadaccini, G, Casa, G, Di Leva, A, De Cesare, N, D'Onofrio, A, Gialanella, L, Imbriani, G, Palmieri, A, Roca, V, Rolfs, C, Sabbarese, C, Strieder, F, Schuermann, D, Terrasi, F. 2004. Accelerator mass spectrometry at the 4MV Dynamitron Tandem in Bochum. Nuclear Instruments and Methods in Physics Research B 222(1–2):255–60.CrossRefGoogle Scholar
Marzaioli, F, Lubritto, C, Battipaglia, G, Passariello, I, Rubino, M, Detlef, R, Strumia, S, Miglietta, F, D'Onofrio, A, Cotrufo, MF, Terrasi, F. 2005. Reconstruction of past CO2 concentration at a natural CO2 vent site using radiocarbon dating of tree rings. Radiocarbon 47(2):257–63.Google Scholar
Mook, WG, Streurman, HJ. 1983. Physical and chemical aspects of radiocarbon dating. In: Mook, WG, Waterbolk, HAT, editors. Proceedings of the First International Symposium “14C and Archaeology.” Groningen 1981. PACT 8:3155.Google Scholar
Passariello, I, Marzaioli, F, Lubritto, C, Rubino, M, D'Onofrio, A, De Cesare, N, Borriello, G, Casa, G, Palmieri, A, Rogalla, D, Sabbarese, C, Terrasi, F. 2006. Radiocarbon sample preparation at the CIRCE AMS laboratory in Caserta, Italy. Radiocarbon 49(2):225–32.Google Scholar
Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial bio-sphere. Global Biogeochemical Cycles 16(4):1112, doi:10.1029/2002GB001876.Google Scholar
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C Intercomparison Exercise 1990. Radiocarbon 34(3):506–19.Google Scholar
Santos, GM, Southon, JR, Druffel-Rodriguez, KC, Griffin, S, Mazon, M. 2004. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report of sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46(1):165–73.CrossRefGoogle Scholar
Six, J, Callewaert, P, Lenders, S, De Gryze, S, Morris, SJ, Gregorich, EG, Paul, EA, Paustian, K. 2002. Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal 66(6):1981–7.CrossRefGoogle Scholar
Slota, PJ Jr, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303–6.CrossRefGoogle Scholar
Southon, J. 2007. Graphite reactor memory – Where is it from and how to minimize it? Nuclear Instruments and Methods in Physics Research B 259(1):288–92.Google Scholar
Steier, P, Dellinger, F, Kutschera, W, Priller, A, Rom, W, Wild, EM. 2004. Pushing the precision limit of 14C AMS. Radiocarbon 46(1):516.CrossRefGoogle Scholar
Terrasi, F, Rogalla, D, De Cesare, N, D'Onofrio, A, Lubritto, C, Marzaioli, F, Passariello, I, Rubino, M, Sabbarese, C, Casa, G, Palmieri, A, Gialanella, L, Imbriani, G, Roca, V, Romano, M, Sundquist, M, Loger, R. 2007. A new AMS facility in Caserta/Italy. Nuclear Instruments and Methods in Physics Research B 259(1):14–7.CrossRefGoogle Scholar
Trumbore, S. 2000. Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411.Google Scholar
Tuniz, C, Bird, JR, Fink, D, Herzog, GF. 1998. Accelerator Mass Spectrometry: Ultrasensitive Analysis for Global Science. Boca Raton: CRC Press. 408 p.Google Scholar
Vandeputte, K, Moens, L, Dams, R. 1996. Improved sealed-tube combustion of organic samples to CO2 for stable isotope analysis, radiocarbon dating and percent carbon determinations. Analytical Letters 29(15):2761–73.Google Scholar
Vogel, JS. 1992. Rapid production of graphite without contamination for biomedical AMS. Radiocarbon 34(3):344–50.Google Scholar
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289–93.Google Scholar
Xu, X, Trumbore, SE, Zheng, S, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: reducing background and attaining high precision. Nuclear Instruments and Methods in Physics Research B 259(1):320–9.Google Scholar