Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-6zfdk Total loading time: 1.217 Render date: 2021-04-18T03:12:24.286Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Shape Analysis of Cumulative Probability Density Function of Radiocarbon Dates Set in the Study of Climate Change in the Late Glacial and Holocene

Published online by Cambridge University Press:  18 July 2016

Anna Pazdur
Affiliation:
Radiocarbon Laboratory, Institute of Physics, Silesian University of Technology, Krzywoustego 2, 44-100 Gliwice, Poland
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

We report on a statistical analysis of a large set of radiocarbon dates for reconstruction of paleoclimate. Probability density functions were constructed by summing the probability distributions of individual 14C dates. Our analysis was based on 2 assumptions: 1) The amount of organic matter in sediments depends on paleogeographical conditions; 2) The number of 14C-dated samples is proportional to the amount of organic matter deposited in sediments in the examined time intervals. We quantified how many dates are required to give statistically reliable results. As an example, 785 peat dates from Poland were selected. The dates encompassed the Holocene and Late Glacial period. All dates came from the Gliwice Radiocarbon Laboratory. Results were compared with other paleoenvironmental records. Detailed analysis of the frequency distributions showed that preferential sampling plays an important part in the shape determination. The general rule to take samples from locations where visible changes of sedimentation are apparent (e.g. from the top and the bottom of the peat layer) results in narrow peaks in the probability density function near the limits of the Holocene subdivision.

Type
Part II
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Bartlein, PJ, Edwards, ME, Shafer, SL, Barker, ED. 1995. Calibration of radiocarbon ages and the interpretation of paleoenvironmental records. Quaternary Research 44:417–24.CrossRefGoogle Scholar
Blunier, T, Chappellaz, JA, Schwander, J, Stauffer, B, Raynaud, D. 1995. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374: 46–9.CrossRefGoogle Scholar
Bluszcz, A, Michczyński, A. 1999. Statistical methods in chronostratigraphy. In: Pazdur, A, editor. Geochronology of Upper Quaternary in Poland. Wojewoda: Wind J. p 71–9. In Polish.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.CrossRefGoogle Scholar
Efron, B, Tibshirani, RJ. 1993. An Introduction to the Bootstrap. New York: Chapman and Hall. 436 p.CrossRefGoogle Scholar
Geyh, MA. 1980. Holocene sea-level history: case study of the statistical evaluation of 14C dates. Radiocarbon 22(3):695704.CrossRefGoogle Scholar
Geyh, MA, Streif, H. 1970. Studies on coastal movements and sea-level changes by means of the statistical evaluation of 14C-data. Proceedings of the “Symposium on Coastal Geodesy.” Münich, 20–24 July 1970. p 599611.Google Scholar
Goslar, T, Arnold, M, Pazdur, MF. 1998. Variations of atmospheric 14C concentrations at the Pleistocene/ Holocene transition, reconstructed from the Lake Gościąż sediment. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, Central Poland. A Monographic Study. p 162–71.Google Scholar
Goździk, J, Pazdur, MF. 1987. Frequency distribution of 14C dates from Poland in the time interval 12–45 kyr BP and its palaeogeographical implications. Zeszyty Naukowe Politechniki $SAląskiej, s. Matematyka-Fizyka, z. 56, Geochronometria 4:2742.Google Scholar
Hercman, H. 2000. Reconstruction of paleoclimatic changes in Central Europe between 10 and 200 thousand years BP, based on analysis of growth frequency of speleothems. Studia Quaternaria 17:3570.Google Scholar
Ilnicki, P, Żurek, S. 1996. Peat resources in Poland. In: Lappalainen, E, editor. Global Peat Resources. Jyväskylä: International Peat Society Geological Survey of Finland. p 119–25.Google Scholar
Johnsen, SJ, Clausen, HB, Dansgaard, W, Gundestrup, NS, Hammer, CU, Andersen, U, Andersen, KK, Hvidberg, CS, Dahl-Jensen, D, Steffensen, JP, Shoji, H, Sveinbjörnsdóttir, AE, White, JWC, Jouzel, J, Fisher, D. 1997. The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research 102:26,397410.CrossRefGoogle Scholar
Kuc, T, Różański, K, Duliński, M. 1998. Isotopic indicators of the Late Glacial/Holocene transition recorded in the sediments of Lake Gościąż. In: Ralska-Jasiewiczowa, M, Goslar, T, Madeyska, T, Starkel, L, editors. Lake Gościąż, Central Poland. A Monographic Study. p 158–62.Google Scholar
Michczyńska, DJ, Michczyńsky, A, Pazdur, A, Żurek, S. 2003. 14C dates of peat for reconstruction of environmental changes in the past. Geochronometria 22:4754.Google Scholar
Michczyńska, DJ, Pazdur, MF, Walanus, A. 1990. Bayesian approach to probabilistic calibration of radiocarbon ages. In: Mook, WG, Waterbolk, HT, editors. Proceedings of the 2nd International Symposium 14C and Archaeology. Strasburg. PACT 29:6979.Google Scholar
Pazdur, A, Michczyński, A, Pawlyta, J, Spahiu, P. 2000. Comparison of the radiocarbon dating methods used in the Gliwice Radiocarbon Laboratory. Geochronometria 18:914.Google Scholar
Pazdur, A, Pazdur, MF. 1986a. Aparatura pomiarowa Laboratorium 14C w Gliwicach. Doświadczenia konstrukcyjne i eksploatacyjne (The measuring equipment of the Gliwice Radiocarbon Laboratory. Experience gathered in the construction and exploitation). Zeszyty Naukowe Politechniki $SAląskiej, seria Matematyka-Fizyka, z.46, Geochronometria 1:5569.Google Scholar
Pazdur, A, Pazdur, MF. 1986b. Radiocarbon chronology of the Late Glacial period in Poland. Acta Interdisciplinaria Archaeology 4:6171.Google Scholar
Pazdur, A, Pazdur, MF, Pawlyta, J, Górny, A, Olszewski, M. 1995. Paleoclimatic implications of radiocarbon dating of speleothems from Cracow-Wieluń Upland, S Poland. Radiocarbon 37(2):103–10.CrossRefGoogle Scholar
Pazdur, MF, Michczyńska, DJ. 1989. Improvement of the procedure for probabilistic calibration of radiocarbon dates. In: Long, A, Kra, RS, Srdoć, D, editors. Proceedings of the 13th International 14C Conference. Radiocarbon 31(3):824–32.CrossRefGoogle Scholar
Singhvi, AK, Bluszcz, A, Bateman, MD, Someshwar Rao, M. 2001. Luminescence dating of loess-paleosol sequences and coversands: methodological aspects and paleoclimatic implications. Earth Science Reviews 54: 193211.CrossRefGoogle Scholar
Stolk, A, Törnqvist, TE, Hekhuis, KPV, Berendsen, HJA, van der Plicht, J. 1994. Calibration of 14C histograms: a comparison of methods. Radiocarbon 36(1):110.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
van der Plicht, J. 1993. The Groningen radiocarbon calibration program. Radiocarbon 35(1):231–7.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 158 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 18th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Shape Analysis of Cumulative Probability Density Function of Radiocarbon Dates Set in the Study of Climate Change in the Late Glacial and Holocene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Shape Analysis of Cumulative Probability Density Function of Radiocarbon Dates Set in the Study of Climate Change in the Late Glacial and Holocene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Shape Analysis of Cumulative Probability Density Function of Radiocarbon Dates Set in the Study of Climate Change in the Late Glacial and Holocene
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *