Skip to main content Accessibility help
×
Home

Seasonal 14C and Sr/Ca Records of a Modern Coral around Daya Bay Nuclear Power Plants

  • Ning Wang (a1), Chengde Shen (a1) (a2), Weidong Sun (a3), Weixi Yi (a1), Ping Ding (a1), Xingfang Ding (a2), Dongpo Fu (a2) and Kexin Liu (a2)...

Abstract

Due to an increasing number of nuclear reactors in operation, the radiocarbon (14C) released from nuclear power plants (NPPs) has become an important anthropogenic source of 14C. The examination of seasonal Δ14C and monthly Sr/Ca, Mg/Ca variations in a coral in Daya Bay (China) shows that NPPs located there have an impact on the Δ14C level and sea surface temperature (SST). The Mg/Ca variation was in good correlation with the Pacific Decadal Oscillation (PDO) before the operation of Ling’ao NPP in 2002, but this correlation became weak due to an abnormally higher SST after 2002. As illustrated by the Δ14C variation in the coral, there were two relative increases of Δ14C values in 1994 and 2002 when Daya Bay NPP and Ling’ao NPP began operations, respectively. The 14C released from NPPs, instead of oceanic circulation, is probably the primary factor on the Δ14C variation in Daya Bay during the NPPs’ operation. The relative increase in Δ14C value was ~80‰, which equals to ~18 Bq/kgC in specific activity. The seasonal variability in Δ14C value usually peaked in summer, the real reason of which was unknown. This study sheds light on how the NPPs influence the 14C content and SST in surrounding marine environment.

Copyright

Corresponding author

*Corresponding author. Email: cdshen@gig.ac.cn.

Footnotes

Hide All

Selected Papers from the 2015 Radiocarbon Conference, Dakar, Senegal, 16–20 November 2015

Footnotes

References

Hide All
Bagnato, S, Linsley, BK, Howe, SS, Wellington, GM, Salinger, J. 2004. Evaluating the use of the massive coral Diploastrea heliopora for paleoclimate reconstruction. Paleoceanography 19(1).
Beck, JW, Edwards, RL, Ito, E, Taylor, FW, Recy, J, Rougerie, F, Joannot, P, Henin, C. 1992. Sea-surface temperature from coral skeletal strontium calcium ratios. Science 257(5070):644647.
Chen, TR, Yu, KF, Li, S, Price, GJ, Shi, Q, Wei, GJ. 2010. Heavy metal pollution recorded in Porites corals from Daya Bay, northern South China Sea. Marine Environmental Research 70(3–4):318326.
Chen, TR, Yu, KF, Li, S, Chen, TG, Shi, Q. 2011a. Anomalous Ba/Ca signals associated with low temperature stresses in Porites corals from Daya Bay, northern South China Sea. Journal of Environmental Sciences 23(9):14521459.
Chen, TR, Yu, KF, Shi, Q, Chen, TG, Wang, R. 2011b. Effect of global warming and thermal effluents on calcification of the Porites coral in Daya Bay, northern South China Sea. Journal of Tropical Oceanography 30(2):19.
Chen, TR, Yu, KF, Chen, TG. 2013. Sr/Ca-sea surface temperature calibration in the coral Porites lutea from subtropical northern South China Sea. Palaeogeography Palaeoclimatology Palaeoecology 392:98104.
Chudy, M, Povinec, P. 1982. Radiocarbon production in a CO2 and coolant of nuclear reactor. Acta Facultatis Rerum Naturalium Universitatis Comenianae, Physica (22):127134.
Davis, WJ. 1977. Carbon-14 production in nuclear reactors. ORNL/NUREG/TM-12; TRN: 77-009585 United States10.2172/7114972TRN: 77-009585Thu Mar 24 09:11:07 EDT 2011Dep. NTISORNL; ERA-02-037614; EDB-77-088384.
Deng, WF, Liu, Y, Wei, GJ, Li, XH, Tu, XL, Xie, LH, Zhang, H, Sun, WD. 2010. High-precision analysis of Sr/Ca and Mg/Ca ratios in corals by laser ablation inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry 25(1):8487.
Druffel, ERM, Griffin, S, Hwang, J, Komada, T, Beaupre, SR, Druffel-Rodriguez, KC, Santos, GM, Southon, J. 2004. Variability of monthly radiocarbon during the 1760s in corals from the Galapagos Islands. Radiocarbon 46(2):627631.
Druffel, ERM, Griffin, S, Beaupre, SR, Dunbar, RB. 2007. Oceanic climate and circulation changes during the past four centuries from radiocarbon in corals. Geophysical Research Letters 34(9).
Druffel, ERM, Griffin, S, Glynn, DS, Dunbar, RB, Mucciarone, DA, Toggweiler, JR. 2014. Seasonal radiocarbon and oxygen isotopes in a Galapagos coral: calibration with climate indices. Geophysical Research Letters 41(14):50995105.
GB 6249-1986. 1986. Regulations for Environmental Radiation Protection of Nuclear Power Plant, National Standard of the People’s Republic of China. Beijing: China Standards Publishing House.
GB 6249-2011. 2011. Regulations for Environmental Radiation Protection of Nuclear Power Plant (GB 6249-2011), National Standard of the People’s Republic of China. Beijing: China Standards Publishing House.
Groenendijk, P, Sass-Klaassen, U, Bongers, F, Zuidema, PA. 2014. Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in central Africa. Forest Ecology and Management 323:6578.
Grottoli, AG, Gille, ST, Druffel, ERM, Dunbar, RB. 2003. Decadal timescale shift in the 14C record of a central equatorial Pacific coral. Radiocarbon 45(1):9199.
Grumet, NS, Guilderson, TP, Dunbar, RB. 2002. Pre-bomb radiocarbon variability inferred from a Kenyan coral record. Radiocarbon 44(2):581590.
Guilderson, TP, Schrag, DP, Cane, MA. 2004. Surface water mixing in the Solomon Sea as documented by a high-resolution coral 14C record. Journal of Climate 17(5):11471156.
Guilderson, TP, Cole, JE, Southon, JR. 2005. Pre-bomb Δ14C variability and the suess effect in Cariaco Basin surface waters as recorded in hermatypic corals. Radiocarbon 47(1):5765.
Hertelendi, E, Uchrin, G, Ormai, P. 1989. 14C Release in various chemical forms with gaseous effluents from the Paks nuclear power plant. Radiocarbon 31(3):754761.
IAEA. 2004. Management of waste containing tritium and carbon-14. In: IAEA Technical Reports Series No. 421. Vienna: International Atomic Energy Agency. 109 p.
Ji, CY, Zhang, DG. 2004. Results and analysis of environmental radiation monitoring at GNPS (1994~2003). Radiation Protection 24(3–4):173190.
Jing, ZY, Qi, YQ, Hua, ZL, Zhang, H. 2009. Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Continental Shelf Research 29(2):467478.
Levin, I, Hesshaimer, V. 2000. Radiocarbon – a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.
Levin, I, Kromer, B. 2004. The tropospheric CO2-14C level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):12611272.
Levin, I, Kromer, B, Barabas, M, Munnich, KO. 1988. Environmental distribution and long-term dispersion of reactor CO2 -14C around 2 German nuclear-power plants. Health Physics 54(2):149156.
Liu, KX, Ding, XF, Fu, DP, Pan, Y, Wu, XH, Guo, ZY, Zhou, LP. 2007. A new compact AMS system at Peking University. Nuclear Instruments & Methods in Physics Research B 259(1):2326.
Loosli, HH, Oeschger, H. 1989. 14C in the environment of Swiss nuclear installations. Radiocarbon 31(3):747753.
Magnusson, A, Stenstrom, K, Aronsson, PO. 2008. 14C in spent ion-exchange resins and process water from nuclear reactors: a method for quantitative determination of organic and inorganic fractions. Journal of Radioanalytical and Nuclear Chemistry 275(2):261273.
Mantua, NJ, Hare, SR, Zhang, Y, Wallace, JM, Francis, RC. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78(6):10691079.
McCartney, M, Baxter, MS, McKay, K, Scott, EM. 1986. Global and local-effects of 14C discharges from the nuclear-fuel cycle. Radiocarbon 28(2A):634643.
Milton, GM, Kramer, SJ, Brown, RM, Repta, CJW, King, KJ, Rao, RR. 1995. Radiocarbon dispersion around Canadian nuclear facilities. Radiocarbon 37(2):485496.
Mitsuguchi, T, Matsumoto, E, Abe, O, Uchida, T, Isdale, PJ. 1996. Mg/Ca thermometry in coral-skeletons. Science 274(5289):961963.
Mitsuguchi, T, Uchida, T, Matsumoto, E, Isdale, PJ, Kawana, T. 2001. Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: implications for carbonate geochemistry. Geochimica Et Cosmochimica Acta 65(17):28652874.
Mitsuguchi, T, Kitagawa, H, Matsumoto, E, Shibata, Y, Yoneda, M, Kobayashi, T, Uchida, T, Ahagon, N. 2004. High-resolution 14C analyses of annually banded coral skeletons from Ishigaki Island, Japan: implications for oceanography. Nuclear Instruments & Methods in Physics Research 223:455459.
Molnar, M, Szanto, Z, Svingor, E, Palcsu, L, Futo, I. 2002. Measurement of beta-emitters in the air around the Paks NPP, Hungary. In: International Conference on Applications of High Precision Atomic and Nuclear Methods, HIPAN 2002 Book of Abstracts. Romania: Horia Hulubei National Institute for Physics and Nuclear Engineering. p 67.
Morton, B, Blackmore, G. 2001. South China Sea. Marine Pollution Bulletin 42(12):12361263.
Nydal, R, Lovseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research–Oceans and Atmospheres 88(Nc6):36213642.
Pazdur, A, Nakamura, T, Pawelczyk, S, Pawlyta, J, Piotrowska, N, Rakowski, A, Sensula, B, Szczepanek, M. 2007. Carbon isotopes in tree rings: climate and the Suess Effect interferences in the last 400 years. Radiocarbon 49(2):775788.
Pieroni, N, Kang, KS, International Atomic Energy Agency. 2008. Restarting delayed nuclear power plant projects. In: IAEA Nuclear Energy Series. Vienna: International Atomic Energy Agency. 141 p.
Povinec, PP, Chudy, M, Sivo, A, Simon, J, Holy, K, Richtarikova, M. 2009. Forty years of atmospheric radiocarbon monitoring around Bohunice nuclear power plant, Slovakia. Journal of Environmental Radioactivity 100(2):125130.
Roussel-Debet, S, Gontier, G, Siclet, F, Fournier, M. 2006. Distribution of carbon-14 in the terrestrial environment close to French nuclear power plants. Journal of Environmental Radioactivity 87(3):246259.
Schrag, DP. 1999. Rapid analysis of high-precision Sr/Ca ratios in corals and other marine carbonates. Paleoceanography 14(2):97102.
Southon, J, Kashgarian, M, Fontugne, M, Metivier, B, Yim, WWS. 2002. Marine reservoir corrections for the Indian Ocean and Southeast Asia. Radiocarbon 44(1):167180.
Stenstrom, K, Skog, G, Thornberg, C, Erlandsson, B, Hellborg, R, Mattsson, S, Persson, P. 1998. 14C levels in the vicinity of two Swedish nuclear power plants and at two “clean-air” sites in southernmost Sweden. Radiocarbon 40(1):433438.
Stuiver, M, Braziunas, TF, Becker, B, Kromer, B. 1991. Climatic, solar, oceanic, and geomagnetic influences on Late-Glacial and Holocene atmospheric 14C /12C change. Quaternary Research 35(1):124.
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415417.
Svetlik, I, Tomaskova, L, Molnar, M, Svingor, E, Futo, I, Pinter, T, Rulik, P, Michalek, V. 2006. Monitoring of atmospheric 14CO2 in Central European countries. Czechoslovak Journal of Physics 56:D291D297.
Toggweiler, JR, Dixon, K, Broecker, WS. 1991. The Peru Upwelling and the ventilation of the South-Pacific thermocline. Journal of Geophysical Research–Oceans 96(C11):2046720497.
Uchrin, G, Csaba, E, Hertelendi, E, Ormai, P, Barnabas, I. 1992. 14C Release from a Soviet-designed pressurized water-reactor nuclear-power plant. Health Physics 63(6):651655.
Uchrin, G, Hertelendi, E, Volent, G, Slavik, O, Moravek, J, Koba, I, Vokal, B. 1998. 14C measurements at PWR-type nuclear power plants in three Middle European countries. Radiocarbon 40(1):439446.
Usoskin, IG, Mursula, K, Solanki, S, Schussler, M, Alanko, K. 2004. Reconstruction of solar activity for the last millennium using 10Be data. Astronomy & Astrophysics 413(2):745751.
Vaitkeviciene, V, Mazeika, J, Skuratovic, Z, Motiejunas, S, Vaidotas, A, Orysaka, A, Ovcinikov, S. 2013. 14C in radioactive waste for decommissioning of the Ignalina nuclear power plant. Radiocarbon 55(2–3):783790.
Vincze, A, Ranga, T, Nagy, G, Zsille, O, Solymosi, J. 2009. Environmental impact assessment of radioactive water pipe leakage at NPP Paks. Periodica Polytechnica-Chemical Engineering 53(2):8791.
Wang, YS, Wang, ZD, Huang, LM. 2004. Environment changes and trends in Daya Bay in recent 20 years. Journal of Tropical Oceanography 23(5):8595.
Wang, ZT, Hu, D, Xu, H, Guo, QJ. 2014. 14C distribution in atmospheric and aquatic environments around Qinshan nuclear power plant, China. Radiocarbon 56(3):11071114.
Wang, ZT, Xiang, YY, Guo, QJ. 2012. 14C levels in tree rings located near Qinshan nuclear power plant, China. Radiocarbon 54(2):195202.
Wei, GJ, Yu, KF, Zhao, JX. 2004. Sea surface temperature variations recorded on coralline Sr/Ca ratios during Mid-Late Holocene in Leizhou Peninsula. Chinese Science Bulletin 49(17):18761881.
Wei, GJ, Deng, WF, Yu, KF, Li, XH, Sun, WD, Zhao, JX. 2007. Sea surface temperature records in the northern South China Sea from mid-Holocene coral Sr/Ca ratios. Paleoceanography 22(3).
Worbes, M. 2002. One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20(1):217231.
Xu, XM, Trumbore, SE, Zheng, SH, Southon, JR, McDuffee, KE, Luttgen, M, Liu, JC. 2007. Modifying a sealed tube zinc reduction method for preparation of AMS graphite targets: Reducing background and attaining high precision. Nuclear Instruments & Methods in Physics Research B 259(1):320329.
Yang, DJ, Chen, XQ, Li, B. 2012. Tritium release during nuclear power operation in China. Journal of Radiological Protection 32(2):167173.
Yim, MS, Caron, F. 2006. Life cycle and management of carbon-14 from nuclear power generation. Progress in Nuclear Energy 48(1):236.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed