Skip to main content Accessibility help
×
Home

Radiocarbon Determination of Particulate Organic Carbon in Non-Temperated, Alpine Glacier Ice

  • Peter Steier (a1), Roswitha Drosg (a1), Mariaelenea Fedi (a2), Walter Kutschera (a1), Martin Schock (a3), Dietmar Wagenbach (a3) and Eva Maria Wild (a1)...

Abstract

Dating ice samples from glaciers via radiocarbon is a challenge that requires systematic investigations. This work describes an approach for extraction and accelerator mass spectrometry (AMS) 14C analysis of the particulate organic carbon (POC) fraction in glacier ice samples. Measurements were performed at VERA (Vienna Environmental Research Accelerator) on ice samples obtained mainly from the non-temperated ablation zone of the Grenzgletscher (Grenz Glacier) system (Monte Rosa Massif, Swiss Alps). The samples were obtained from 2 sampling sites situated roughly on a common flow line. The sample masses used were between 0.3 and 1.4 kg of ice, yielding between 18 and 307 μg of carbon as POC. The carbon contamination introduced during sample processing varied between 5.4 and 33 μg C and originated mainly from the quartz filters and the rinsing liquids used in processing. Minimum sample sizes for successful graphitization of CO2 in our laboratory could be reduced to <10 μg carbon, with a background in the graphitization process of ∼0.5 μg of 40-pMC carbon. Evaluation of the whole procedure via 11 Grenzgletscher samples revealed a surprisingly large scatter of pMC values. We obtain a mean calibrated age of 2100 BC to AD 900 (95.4% confidence level), which is not significantly different for the 2 sampling sites. Discussions of these results suggest that single 14C dates of glacial POC are presently of limited significance. Future improvements with respect to analytical precision and sample characterization are proposed in order to fully explore the POC dating potential.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Radiocarbon Determination of Particulate Organic Carbon in Non-Temperated, Alpine Glacier Ice
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Radiocarbon Determination of Particulate Organic Carbon in Non-Temperated, Alpine Glacier Ice
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Radiocarbon Determination of Particulate Organic Carbon in Non-Temperated, Alpine Glacier Ice
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: peter.steier@univie.ac.at.

References

Hide All
Armbruster, M. 2000. Stratigraphische Datierung hochalpiner Eisbohrkerne über die letzten 1000 Jahre [Master's thesis]. Heidelberg: Institut für Umweltphysik, Universität Heidelberg. In German.
Biegalski, SR, Currie, LA, Fletcher, RA, Klouda, GA, Weissenbök, R. 1998. AMS and microprobe analysis of combusted particles in ice and snow. Radiocarbon 40(1):310.
Chýlek, P, Srivastava, V, Cahenzli, L, Pinnick, RG, Dod, RL, Novakov, T, Cook, TL, Hinds, BD. 1987. Aerosol and graphitic carbon content of snow. Journal of Geophysical Research 92:9801–9.
Eisen, O, Nixdorf, U, Keck, L, Wagenbach, D. 2003. Alpine ice cores and ground penetrating radar: combined investigations for glaciological and climatic interpretations of a cold Alpine ice body. Tellus B 55:1007–17.
EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429:623–8.
Goslar, T, van der Knaap, WO, Hicks, S, Andri, M, Czernik, J, Goslar, E, Räsänen, S, Hyötylä, H. 2005. Radiocarbon dating of modern peat profiles: pre- and post-bomb 14C variations in the construction of age-depth models. Radiocarbon 47(1):115–34.
Haeberli, W. 1975. Eistemperaturen in den Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 11/2:203–20. In German.
Haeberli, W, Kääb, A, Wagner, S, Vonder Mühll, D, Geissler, P, Haas, JN, Glatzel-Mattheier, H, Wagenbach, D. 1999. Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtel-Corvatsch, Swiss Alps: geomorphological and glaciological implications. Journal of Glaciology 45/149:18.
Hammer, C, Mayewski, PA, Peel, D, Stuiver, M. 1997. Preface. Journal of Geophysical Research 102:26,3156.
der Schweiz, Landeskarte, 1:25000: Zermatt [map]. 1995. Bundesamt für Landestopographie. Wabern, Switzerland.
Lal, D, Jull, AJT, Donahue, DJ, Burtner, D, Nishiizumi, K. 1990. Polar ice ablation rates measured using in situ cosmogenic 14C. Nature 346:350–2.
Lal, D, Jull, AJT, Burr, GS, Donahue, DJ. 2000. On the characteristics of cosmogenic in situ 14C in some GISP2 Holocene and late glacial ice samples. Nuclear Instruments and Methods in Physics Research B 172:623–31.
Lal, D, Jull, AJT, Donahue, DJ, Burr, GS, Deck, B, Jouzel, J, Steig, E. 2001. Record of cosmogenic in situ produced 14C in Vostok and Taylor Dome ice samples: implications for strong role of wind ventilation processes. Journal of Geophysical Research 106:31,93342.
Levin, I, Hesshaimer, V. 2000. Radiocarbon–a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.
Meese, DA, Gow, AJ, Alley, RB, Zielinski, GA, Grootes, PM, Ram, M, Taylor, KC, Mayewski, PA, Bolzan, JF. 1997. The Greenland Ice Sheet Project 2 depth-age scale: methods and results. Journal of Geophysical Research 102:26,41123.
Müller, JW. 2000. Possible advantages of a robust evaluation of comparisons. Journal of Research of the National Institute of Standards and Technology 105:551–5.
Petit, JR, Jouzel, J, Raynaud, D, Barkov, NI, Barnola, J-M, Basile, I, Benders, M, Chappellaz, J, Davis, M, Delayque, G, Delmotte, M, Kotlyakov, VM, Legrand, M, Lipenkov, VY, Lorius, C, Pépin, L, Ritz, C, Saltzman, E, Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–36.
Reeh, N, Oerter, H, Lettrguilly, A, Miller, H, Hubberten, HW. 1991. A new, detailed ice-age oxygen-18 record from the ice sheet margin in central West Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section) 90:373–83.
Renaud, A. 1952. Observations on the surface movement and ablation of the Gorner Glacier (Switzerland). Journal of Glaciology 2/11:54–7.
Rom, W, Brenninkmeijer, CAM, Bronk Ramsey, C, Kutschera, W, Priller, A, Puchegger, S, Röckmann, T, Steier, P. 2000. Methodological aspects of atmospheric 14CO measurements with AMS. Nuclear Instruments and Methods in Physics Research B 172:530–6.
Rozanski, K, Stichler, W, Gonfiantini, R, Scott, EM, Beukens, RP, Kromer, B, van der Plicht, J. 1992. The IAEA 14C intercomparison exercise 1990. Radiocarbon 34(3):506–19.
Seinfeld, JH. 1998. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New York: John Wiley & Sons. 1326 p.
Steier, P, Dellinger, F, Kutschera, W, Rom, W, Wild, EM. 2004. Pushing the precision limit of 14C measurements with AMS. Radiocarbon 46(2):969–78.
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.
Szidat, S, Jenk, TM, Gäggeler, HW, Synal, HA, Hajdas, I, Bonani, G, Saurer, M. 2004. THEODORE, a two-step heating system for the EC/OC determination of radiocarbon (14C) in the environment. Nuclear Instruments and Methods in Physics Research B 223–224:829–36.
Thompson, LG, Davis, ME, Mosley-Thompson, E, Sowers, TA, Henderson, KA, Zagorodnov, VS, Lin, P-N, Mikhalenko, VN, Campen, RK, Bolzan, JF, Cole-Dai, J, Francou, B. 1998. A 25,000-year tropical climate history from Bolivian ice cores. Science 282:1858–64.
Thompson, LG, Mosley-Thompson, E, Davis, ME, Henderson, KA, Brecher, HH, Zagorodnov, VS, Mashiotta, TA, Lin, P-N, Mikhalenko, VN, Hardy, DR, Beer, J. 2002. Kilimanjaro ice core records: evidence of Holocene climate change in tropical Africa. Science 298:589–93.
Van Roijen, JJ, van der Borg, K, de Jong, AFM, Oerlemans, J. 1995. Ages and ablation rates from 14C measurements on Antarctic ice. Annals of Glaciology 21:139–43.
Vandeputte, K, Moens, L, Dams, R, van der Plicht, J. 1998. Study of the 14C-contamination potential of C impurities in CuO and Fe. Radiocarbon 40(1):103–10.
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5:289–93.
Wagenbach, D. 1989. Environmental records in alpine glaciers and ice sheets. In: Oeschger, H, Langway, CC, editors. The Environmental Record in Glaciers and Ice Sheets. Dahlem Konferenzen. Chichester: John Wiley & Sons Limited. p 6983.
Weissenbök, R, Currie, LA, Gröllert, C, Kutschera, W, Marolf, J, Priller, A, Puxbaum, H, Rom, W, Steier, P. 2000. Accelerator mass spectrometry analysis of non-soluble carbon in aerosol particles from high alpine snow (Mt. Sonnblick, Austria). Radiocarbon 42(2):285–94.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed