Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-18T18:16:35.730Z Has data issue: false hasContentIssue false

Radiocarbon Dating of the Last Volcanic Eruptions of Ciomadul Volcano, Southeast Carpathians, Eastern-Central Europe

Published online by Cambridge University Press:  18 July 2016

Sz Harangi*
Affiliation:
Department of Petrology and Geochemistry, Eötvös University, 1117 Budapest Pázmány sétány 1/C, Hungary
M Molnár
Affiliation:
Hertelendi Ede Laboratory of Environmental Studies, MTA ATOMKI, Debrecen, Hungary
A P Vinkler
Affiliation:
Department of Petrology and Geochemistry, Eötvös University, 1117 Budapest Pázmány sétány 1/C, Hungary
B Kiss
Affiliation:
Department of Petrology and Geochemistry, Eötvös University, 1117 Budapest Pázmány sétány 1/C, Hungary
A J T Jull
Affiliation:
NSF Arizona AMS Laboratory, University of Arizona, 1118 East Fourth St, Tucson, Arizona 85721, USA
A G Leonard
Affiliation:
NSF Arizona AMS Laboratory, University of Arizona, 1118 East Fourth St, Tucson, Arizona 85721, USA
*
Corresponding author. Email: szabolcs.harangi@geology.elte.hu.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper provides new accelerator mass spectrometry (AMS) radiocarbon age data for the last volcanic events in the Carpathian-Pannonian region of eastern-central Europe. The eruption ages were determined on charcoal fragments collected from pumiceous pyroclastic flow deposits at 2 localities of the Ciomadul Volcano. Two charcoal samples from the southeastern margin of the volcano (Bixad locality) set the date of the last volcanic eruption to 27,200 ± 260 yr BP (29,500 ± 260 cal BC). On the other hand, our data show that the Tusnad pyroclastic flow deposit, previously considered as representing the youngest volcanic rock of the region, erupted at ∼39,000 yr BP (∼41,300 cal BC). Thus, a period of dormancy more than 10,000 yr long might have elapsed between the 2 volcanic events. The different ages of the Tusnad and Bixad pyroclastic flow deposits are confirmed also by the geochemical data. The bulk pumices, groundmass glass, and the composition of the main mineral phases (plagioclase and amphibole) suggest eruption of slightly different magmas. Considering also the assumed long volcanic history (∼600 ka) of the Ciomadul, these data suggest that further detailed studies are necessary on this seemingly inactive volcano in order to evaluate the possible renewal of volcanic activity in the future.

Type
Soils and Sediments
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alon, D, Mintz, G, Cohen, I, Weiner, S, Boaretto, E. 2002. The use of Raman spectroscopy to monitor the removal of humic substances from charcoal: quality control for 14C dating of charcoal. Radiocarbon 44(1):111.CrossRefGoogle Scholar
Carn, SA, Pallister, JS, Lara, L, Ewert, JW, Watt, S, Prata, AJ, Thomas, RJ, Villarosa, G. 2009. The unexpected awakening of Chaitén Volcano, Chile. Eos, Transactions American Geophysical Union 90(24):205, doi:10.1029/2009EO240001.CrossRefGoogle Scholar
Darmstadt, H, Pentea, D, Sümmchen, L, Roland, U, Kaliaguine, S, Roy, C. 2000. Surface and bulk chemistry of charcoal obtained by vacuum pyrolysis of bark: influence of feedstock moisture content. Journal of Analytical and Applied Pyrolysis 53(1):117.CrossRefGoogle Scholar
Gansecki, CA, Mahood, GA, McWilliams, M. 1998. New ages for the climactic eruptions at Yellowstone: single-crystal 40Ar/39Ar dating identifies contamination. Geology 26(4):343–6.Google Scholar
Guo, Y, Bustin, RM. 1988. FTIR spectroscopy and reflectance of modern charcoal and fungal decayed wood: implications for studies of inertinite in coals. International Journal of Coal Geology 37(1–2):2953.CrossRefGoogle Scholar
Harangi, S. 2001. Neogene to Quaternary volcanism of the Carpathian-Pannonian region - a review. Acta Geologica Hungarica 44:223–58.Google Scholar
Harangi, S, Lenkey, L. 2007. Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: role of subduction, extension, and mantle plume. GSA Special Papers 418. p 6792.Google Scholar
Hatté, C, Morvan, J, Noury, C, Paterne, M. 2001. Is classical acid-alkali-acid treatment responsible for contamination? An alternative proposition. Radiocarbon 43(2A):177–82.Google Scholar
Juvigne, E, Gewelt, M, Gilot, E, Hurtgen, C, Seghedi, I, Szakács, A, Gábris, G, Hadnagy, Á, Horváth, E. 1994. Une eruption vieille d'environ 10 700 ans (14C) dans les Carpates orientales (Roumanie). Comptes Rendus de l'Académie des Sciences 318:1233–8.Google Scholar
Kiss, B, Harangi, S, Vinkler, AP, Ntaflos, T, Mason, PRD. 2008. Magma evolution and magma ascent rate beneath Ciomadul, the youngest volcano in the Carpathian-Pannonian region. Geophysical Research Abstracts 10: EGU2008-A-11292.Google Scholar
Lanphere, MA, Champion, DE, Christiansen, RL, Izett, GA, Obradovich, JD. 2002. Revised ages for tuffs of the Yellowstone Plateau volcanic field: assignment of the Huckleberry Ridge Tuff to a new geomagnetic polarity event. Geological Society of America Bulletin 114(5):559–68.2.0.CO;2>CrossRefGoogle Scholar
Lara, LE. 2009. The 2008 eruption of the Chaitén Volcano, Chile: a preliminary report. Andean Geology 36(1):125–9.Google Scholar
Magyari, E, Buczkó, K, Jakab, G, Braun, M, Pál, Z, Karátson, D, Pap, I. 2009. Palaeolimnology of the last crater lake in the Eastern Carpathian Mountains: a multiproxy study of Holocene hydrological changes. Hydrobiologia 631(1):2963.Google Scholar
Mason, PRD, Downes, H, Thirlwall, M, Seghedi, I, Szakács, A, Lowry, D, Mattey, D. 1996. Crustal assimilation as a major petrogenetic process in the east Carpathian Neogene and Quaternary continental margin arc, Romania. Journal of Petrology 37(4):927–59.Google Scholar
Moriya, I, Okuno, M, Nakamura, E, Szakács, A, Seghedi, I. 1995. Last eruption and its 14C age of Ciomadul Volcano, Romania. Summaries of Researches Using AMS at Nagoya University 6:8291.Google Scholar
Moriya, I, Okuno, M, Nakamura, T, Ono, K, Seghedi, I. 1996. Radiocarbon ages of charcoal fragments from the pumice flow deposits of the last eruption of Ciomadul Volcano, Romania. Summaries of Researches Using AMS at Nagoya University (VII) 3:252–5.Google Scholar
Nishimaya, K, Hata, T, Imamura, Y, Ishihara, S. 1998. Analysis of chemical structure of wood charcoal by X-ray photoelectron spectroscopy. Journal of Wood Science 44(1):5661.Google Scholar
Okuno, M, Nakamura, T. 2003. Radiocarbon dating of tephra layers: recent progress in Japan. Quaternary International 105(1):4956.Google Scholar
Olson, EA, Broecker, WS. 1958. Sample contamination and reliability of radiocarbon dates. Transactions of the New York Academy Sciences Series II 20:593604.Google Scholar
Orsi, G, Piochi, M, Campajola, L, D'Onofrio, A, Gialanella, L, Terrasi, F. 1996. 14C geochronological constraints for the volcanic history of the island of Ischia (Italy) over the last 5000 years. Journal of Volcanology and Geothermal Research 71(2–4):249–57.CrossRefGoogle Scholar
Pécskay, Z, Edelstein, O, Seghedi, I, Szakács, A, Kovacs, M, Crihan, M, Bernad, A. 1995. K-Ar datings of Neogene-Quaternary calc-alkaline volcanic rocks in Ro-Mania. In: Downes, H, Vaselli, O, editors. Neogene and Related Magmatism in the Carpatho-Pannonian Region. Acta Vulcanologica 7:5361.Google Scholar
Pécskay, Z, Lexa, L, Szakács, A, Seghedi, I, Balogh, K, Konecny, V, Zelenka, T, Kovacs, M, Póka, T, Fülóp, A, Márton, E, Panaiotu, C, Cvetkovic, V. 2006. Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geologica Carpathica 57:511–30.Google Scholar
Peltz, S, Vajdea, E, Balogh, K, Pécskay, Z. 1987. Contributions to the chronological study of the volcanic processes in the Calimani and Harghita Mountains (East Carpathians, Romania). Dari de Seama ale Sedintelor Institutul de Geologie si Geofizica 72–73:323–38.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.Google Scholar
Scott, AC, Glasspool, IJ. 2005. Charcoal reflectance as a proxy for the emplacement temperature of pyroclastic flow deposits. Geology 33(7):589–92.CrossRefGoogle Scholar
Seghedi, I, Szakács, A, Udrescu, C, Stoian, M, Grabari, G. 1987. Trace elements geochemistry of the South Harghita volcanics (East Carpathians): calc-alkaline and shoshonitic association. Dari de Seama ale Sedintelor Institutul de Geologie si Geofizica 72–73:381–97.Google Scholar
Seghedi, I, Downes, H, Harangi, S, Mason, PRD, Pecskay, Z. 2005. Geochemical response of magmas to Neogene-Quaternary continental collision in the Carpathian-Pannonian region: a review. Tectonophysics 410(1–4):485–99.CrossRefGoogle Scholar
Simkin, T, Siebert, L. 1984. Explosive eruptions in space and time: durations, intervals, and a comparison of the world's active volcanic belts. In: Explosive Volcanism: Inception, Evolution, and Hazards. Washington, DC: National Academy Press. p 110–21.Google Scholar
Solomina, O, Pavlova, I, Curtis, A, Jacoby, G, Ponomareva, V, Pevzner, M. 2008. Constraining recent Shiveluch Volcano eruptions (Kamchatka, Russia) by means of dendrochronology. Natural Hazards and Earth System Sciences 8(5):1083–97.Google Scholar
Szabó, C, Harangi, S, Csontos, L. 1992. Review of Neogene and Quaternary volcanism of the Carpathian-Pannonian region. Tectonophysics 208(1–3):243–56.Google Scholar
Szakács, A, Seghedi, I, Pécskay, Z. 1993. Pecularities of South Hargitha Mts. as the terminal segment of the Carpathian Neogene to Quaternary volcanic chain. Revue Roumaine de Géologie Géophysique et Géographie, Géologie 37:2137.Google Scholar
Szakács, A, Seghedi, I, Pécskay, Z. 2002. The most recent volcanism in the Carpathian-Pannonian Region. Is there any volcanic hazard? Geologica Carpathica Special Issue, Proceedings of the XVIIth Congress of Carpathian-Balkan Geological Association 53:193–4.Google Scholar
Vinkler, AP, Harangi, S, Ntaflos, T, Szakács, A 2007. A Csomád vulkán (Keleti Kárpátok) horzsaköveinek kozettani és geokémiai vizsgálata: petrogenetikai következtetések. (Petrology and geochemistry of the pumices from the Ciomadul Volcano (Eastern Carpathians) - implications for the petrogenetic processes). Földtani Közlöny 137:103–28.Google Scholar
Zaretskaia, NE, Ponomareva, VV, Sulerzhitsky, LD, Dirksen, OV. 2001. Radiocarbon dating of the Kurile Lake caldera eruption (South Kamchatka, Russia). Geochronometria 20:95102.Google Scholar