Skip to main content Accessibility help
×
Home

Paleoearthquakes as Anchor Points in Bayesian Radiocarbon Deposition Models: A Case Study from the Dead Sea

  • Elisa J Kagan (a1) (a2), Mordechai Stein (a2), Amotz Agnon (a1) and Christopher Bronk Ramsey (a3)

Abstract

The Bayesian statistical method of the OxCal v 4.1 program is used to construct an age-depth model for a set of accelerator mass spectrometry (AMS) radiocarbon ages of organic debris collected from a late Holocene Dead Sea stratigraphic section (the Ein Feshkha Nature Reserve). The model is tested for a case where no prior earthquake information is applied and for a case where there is incorporation of known ages of 4 prominent historical earthquakes as chronological anchor points along the section. While the anchor-based model provided a tightly constrained age-depth regression, the “non-anchored” model still produces a correlation where most of the 68% or 95% age ranges of the 52 seismites can be correlated to historical earthquakes. This presents us with the opportunity for high-resolution paleoseismic analysis and comparison between various sites.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Paleoearthquakes as Anchor Points in Bayesian Radiocarbon Deposition Models: A Case Study from the Dead Sea
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Paleoearthquakes as Anchor Points in Bayesian Radiocarbon Deposition Models: A Case Study from the Dead Sea
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Paleoearthquakes as Anchor Points in Bayesian Radiocarbon Deposition Models: A Case Study from the Dead Sea
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: elisa.kagan@mail.huji.ac.il.

References

Hide All
Ambraseys, N, Melville, CP, Adams, RD. 1994. The Seismicity of Egypt, Arabia and the Red Sea. Cambridge: Cambridge University Press. 181 p.
Amiran, DHK, Arieh, E, Turcotte, T. 1994. Earthquakes in Israel and adjacent areas: macroseismic observations since 100 B.C.E. Israel Exploration Journal 44:260–305.
Ben-Menahem, A. 1991. Four thousand years of seismicity along the Dead Sea Rift. Journal of Geophysical Research 96(B12):20,195216.
Blockley, SPE, Ramsey, CB, Lane, CS, Lotter, AF. 2008. Improved age modelling approaches as exemplified by the revised chronology for the Central European varved lake Soppensee. Quaternary Science Reviews 27(1–2):6171.
Bookman (Ken-Tor), R, Enzel, Y, Agnon, A, Stein, M. 2004. Late Holocene lake levels of the Dead Sea. Geological Society of America Bulletin 116:555–71.
Bookman, R, Bartov, Y, Enzel, Y, Stein, M. 2006. The levels of late Quaternary lakes in the Dead Sea basin: a century of research. In: Enzel, Y, Stein, M, Agnon, A, editors. New Frontiers in the Dead Sea Paleoenvironmental Research. GSA Special Paper 401:155–70.
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355–63.
Ramsey Bronk, C. 2008. Deposition models for chronological records. Quaternary Science Reviews 27(1–2):4260.
Buck, CE, Kenworthy, JB, Litton, CD, Smith, AFM. 1991. Combining archaeological and radiocarbon information—a Bayesian-approach to calibration. Antiquity 65(249):808–21.
D'Agostini, G. 2003. Bayesian inference in processing experimental data: principles and basic applications. Reports on Progress in Physics 66(9):1383–419.
Guidoboni, E, Comastri, A. 2005. Catalogue of Earthquakes and Tsunamis in the Mediterranean Area from the 11th to the 15th Century. Bologna: Istituto Nazionale di Geofisica e Vulcanologia. 1037 p.
Guidoboni, E, Comastri, A, Traina, G. 1994. Catalogue of Ancient Earthquakes in the Mediterranean Area up to the 10th Century. Bologna: Istituto Nazionale di Geofisica e Vulcanologia. 504 p.
Kagan, EJ, Stein, M, Agnon, A, Neumann, F. Forthcoming. Intrabasin paleoearthquake correlation of the late Holocene Dead Sea. Journal of Geophysical Research.
Ken-Tor, R, Agnon, A, Enzel, Y, Stein, M, Marco, S, Negendank, JFW. 2001. High-resolution geological record of historic earthquakes in the Dead Sea basin. Journal of Geophysical Research 106(B2):2221–34.
Lienkaemper, JL, Bronk Ramsey, C. 2009. OxCal: versatile tool for developing paleoearthquake chronologies—a primer. Seismological Research Letters 80(3):431–4.
Marco, S, Stein, M, Agnon, A, Ron, H. 1996. Long-term earthquake clustering: a 50,000-year paleoseismic record in the Dead Sea Graben. Journal of Geophysical Research 101(B3):6179–92.
Migowski, C, Agnon, A, Bookman, R, Negendank, JFW, Stein, M. 2004. Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments: Earth and Planetary Science Letters 222(1):301–14.
Neumann, FH, Kagan, EJ, Schwab, MJ, Stein, M. 2007. Palynology, sedimentology and palaeoecology of the late Holocene Dead Sea. Quaternary Science Reviews 26(11–12):1476–98.
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed