Skip to main content Accessibility help
×
Home

Non-Destructive Portable Analytical Techniques for Carbon In Situ Screening Before Sampling for Dating Prehistoric Rock Paintings

  • Lucile Beck (a1) (a2), Dominique Genty (a3), Sophia Lahlil (a2), Matthieu Lebon (a2) (a4), Florian Tereygeol (a5), Colette Vignaud (a2), Ina Reiche (a2), Elsa Lambert (a2), Hélène Valladas (a3), Evelyne Kaltnecker (a3), Frédéric Plassard (a6), Michel Menu (a2) and Patrick Paillet (a4)...

Abstract

Direct dating of prehistoric paintings is playing a major role in Paleolithic art studies. Very few figures can be directly dated since the necessary condition is that they contain organic carbon-based material. Thus, it is very important to check the presence of organic carbon-based material in situ before sampling in order to protect the visual integrity of the paintings or drawings. We have tested and compared 3 different portable analytical systems that can be used in cave environments for detecting carbon in prehistoric paintings: (1) a very compact X-ray fluorescence (XRF) system in Villars Cave (Dordogne, France); (2) a portable micro-Raman spectrometer in Rouffignac Cave (Dordogne, France); and (3) an infrared reflectography camera in both caves. These techniques have been chosen for their non-destructiveness: no sample has to be taken from the rock surface and no contact is made between the probes and the paintings or drawings. The analyses have shown that all the animal figures have been drawn with manganese oxides and cannot be directly dated by radiocarbon. However, carbon has been detected in several spots such as black dots and lines and torch marks. 14C results were obtained from 5 torch marks selected in Villars Cave, with ages between 17.1–18.0 ka cal BP. Three methods were used to identify carbon in black pigments or to confirm the presence of torch marks by carbon detection. Thanks to these new analytical developments, it will be now possible to select more accurately the samples to be taken for 14C dating prehistoric paintings and drawings.

Copyright

Corresponding author

Corresponding author. Email: lucile.beck@cea.fr.

References

Hide All
Baffier, D, Girard, M, Menu, M, Vignaud, C. 1999. Color at the Grande Grotte, Arcy-Sur-Cure (Yonne, France). L'Anthropologie 103:121.
Barrière, Cl. 1982. L'art pariétal de Rouffignac. Paris: Picard. 208 p.
Beck, L, Rousselière, H, Castaing, J, Duran, A, Lebon, M, Lahlil, S, Plassard, F. 2012. Analyse in situ des dessins préhistoriques de la grotte de Rouffignac par fluorescence X et diffraction X portable. ArchéoSciences 36:139–52.
Chalmin, E, Sansot, E, Orial, G, Bousta, F, Reiche, I. 2008. Microanalysis and synthesis of calcite. Growth mechanisms on prehistoric paintings in the Large Cave, Arcy-sur-Cure (Yonne, France). X-Ray Spectrometry 37(4):424–34.
Clottes, J, Menu, M, Walter, P. 1990. La préparation des peintures magdaléniennes des cavernes ariégeoises. Bulletin de la Société Préhistorique Française 87:170–92.
Delluc, B, Delluc, G. 1974. La grotte ornée de Villars. Gallia Préhistoire 17:167.
de Sanoit, J, Chambellan, D, Plassard, F. 2005. Caractérisation in situ du pigment noir de quelques œuvres pariétales de la Grotte de Rouffignac à l'aide d'un système portable d'analyse par fluorescence X (XRF). ArchéoSciences 29:6198.
Genty, D, Valladas, H, Beck, L, Téreygeol, F, Delluc, B, Delluc, G, Regnier, E, Baritaud, T, Hellstrom, J, Blamart, DC, Kaltnecker, E, Moreau, C, Dumoulin, JP. In press. La grotte de Villars: données chronologiques de l'occupation humaine et contexte environnemental. PALEO.
Hernanz, A, Gavira-Vallejo, JM, Ruiz-López, JF. 2006. Introduction to Raman microscopy of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. Journal of Raman Spectroscopy 37(10):1054–62.
Hernanz, A, Gavira-Vallejo, JM, Ruiz-López, JF, Edwards, HGM. 2008. A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. Journal of Raman Spectroscopy 39(8):972–84.
Lahlil, S, Lebon, M, Beck, L, Rousselière, H, Vignaud, C, Reiche, I, Menu, M, Paillet, P, Plassard, F. 2012. The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St-Cernin, France. Journal of Raman Spectroscopy 43(11):1637–43.
Menu, M, Vignaud, C. 2006. L'analyse des techniques des peintres de Lascaux. Monumental. p 98103.
Menu, M, Walter, P. 1992. Prehistoric cave painting PIXE analysis for the identification of paint “pots.” Nuclear Instruments and Methods in Physics Research B 64(1–4):547–52.
Menu, M, Walter, P, Vigears, D, Clottes, J. 1993. Façons de peindre au Magdalénien: Niaux (Ariège). Bulletin de la Société Préhistorique Française 90:426–32.
Moissan, H. 1902. Sur les matière colorantes de figures de la grotte de Font-de-Gaume. Compte rendus de l'Académie des sciences 134:1536–40.
Olivares, M, Castro, K, Corchón, MS, Gárate, D, Murelaga, X, Sarmiento, A, Etxebarria, N. 2013. Non-invasive portable instrumentation to study Palaeolithic rock paintings: the case of La Peña Cave in San Roman de Candamo (Asturias, Spain). Journal of Archaeological Science 40(2):1354–60.
Ospitali, F, Smith, DC, Lorblanchet, M. 2006. Preliminary investigations by Raman microscopy of prehistoric pigments in the wall-painted cave at Roucadour, Quercy, France. Journal of Raman Spectroscopy 37(10):1063–71.
Plassard, J. 1999. Rouffignac, le sanctuaire des mammouths. Paris: Le seuil. 96 p.
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, T, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.
Ricciardi, P, Colomban, P, Tournié, A, Milande, V. 2009. Nondestructive on-site identification of ancient glasses: genuine artefacts, embellished pieces or forgeries? Journal of Raman Spectroscopy 40(6):604–17.
Tomasini, EP, Halac, EB, Reinoso, M, Di Liscia, EJ, Maier, MS. 2012. Micro-Raman spectroscopy of carbon-based black pigments. Journal of Raman Spectroscopy 43(11):1671–5.
Tournié, A, Prinsloo, LC, Paris, C, Colomban, P, Smith, B. 2010. The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. Journal of Raman Spectroscopy 42(3):399–406.
Valladas, H, Cachier, H, Maurice, P, Bernaldo De Quiros, F, Clottes, J, Cabrera Valdes, V, Uzquiano, P, Arnold, M. 1992. Direct radiocarbon dates for prehistoric paintings at the Altamira, El Castillo and Niaux caves. Nature 357(6373):6870.
Valladas, V, Tisnérat-Laborde, N, Cachier, H, Arnold, M, Bernaldo de Quirós, F, Cabrera-Valdés, V, Clottes, J, Courtin, J, Fortea-Pérez, J J, Gonzáles-Sainz, C, Moure-Romanillo, A. 2001. Radiocarbon AMS dates for Paleolithic cave paintings. Radiocarbon 43(2B):977–86.
de Boer, JRJ van Asperen. 1968. Infrared reflectography: a method for the examination of paintings. Applied Optics 7(9):1711–4.

Non-Destructive Portable Analytical Techniques for Carbon In Situ Screening Before Sampling for Dating Prehistoric Rock Paintings

  • Lucile Beck (a1) (a2), Dominique Genty (a3), Sophia Lahlil (a2), Matthieu Lebon (a2) (a4), Florian Tereygeol (a5), Colette Vignaud (a2), Ina Reiche (a2), Elsa Lambert (a2), Hélène Valladas (a3), Evelyne Kaltnecker (a3), Frédéric Plassard (a6), Michel Menu (a2) and Patrick Paillet (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed