Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T03:57:33.379Z Has data issue: false hasContentIssue false

No Systematic Early Bias to Mediterranean 14C Ages: Radiocarbon Measurements from Tree-Ring and Air Samples Provide Tight Limits to Age Offsets

Published online by Cambridge University Press:  18 July 2016

Sturt W Manning
Affiliation:
Department of Archaeology, University of Reading, PO Box 217 Whiteknights, Reading RG6 6AB, United Kingdom. Email: s.w.manning@reading.ac.uk.
Mike Barbetti
Affiliation:
NWG Macintosh Centre, Madsen Building F09, The University of Sydney, New South Wales 2006, Australia. Email: m.barbetti@emu.usyd.edu.au.
Bernd Kromer
Affiliation:
Heidelberger Akademie der Wissenschaften, Institut für Umweltphysik der Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Germany. Email: bernd.kromer@iup.uni-heidelberg.de.
Peter Ian Kuniholm
Affiliation:
The Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, B-48 Goldwin Smith Hall, Cornell University, Ithaca, New York 14853–3201, USA. Email: Peter@dendro.mail.cornell.edu.
Ingeborg Levin
Affiliation:
Institut für Umweltphysik der Universität Heidelberg, Im Neuenheimer Feld 229, D-69120, Germany. Email: Ingeborg.Levin@iup.uni-heidelberg.de.
Maryanne W Newton
Affiliation:
The Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, B-48 Goldwin Smith Hall, Cornell University, Ithaca, New York 14853–3201, USA. Email: Maryanne@dendro.mail.cornell.edu.
Paula J Reimer
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550, USA. Email: pjreimer@llnl.gov.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Existing data and theory do not support a recent assertion that upwelling of old carbon has led to systematically 100–300 yr too old radiocarbon ages for the Mediterranean region. Similarly, the prehistoric tree-ring record produced over 3 decades by the Aegean Dendrochronology Project is shown to provide robust, well-replicated data, contrary to a recent unfounded assertion. 14C and dendrochronology provide an accurate and precise chronometric framework for the Mediterranean region.

Type
Articles
Copyright
Copyright © The Arizona Board of Regents on behalf of the University of Arizona 

References

Aldred, C. 1988. Akhenaten: King of Egypt. London: Thames and Hudson.Google Scholar
Baillie, MGL, Pilcher, JR. 1973. A simple crossdating program for tree-ring research, Tree-Ring Bulletin 33: 714.Google Scholar
Betancourt, PP. 1987. Dating the Aegean Late Bronze Age with radiocarbon. Archaeometry 29:4549.Google Scholar
Betancourt, PP. 1998. The chronology of the Aegean Late Bronze Age: unanswered questions. In: Balmuth, MS and Tykot, RH, editors. Sardinian and Aegean chronology: towards the resolution of relative and absolute dating in the Mediterranean, Studies in Sardinian Archaeology V, Oxford: Oxbow. p 291–6.Google Scholar
Betancourt, PP, Lawn, B. 1984. The Cyclades and radiocarbon chronology. In: MacGillivray, JA and Barber, RLN, editors. The prehistoric Cyclades: contributions to a workshop on Cycladic chronology. Edinburgh: University of Edinburgh. p 277–95.Google Scholar
Bhushan, R, Krishnaswami, S, Somayajulu, BLK. 1997. 14C in air over the Arabian Sea. Current Science 73: 273–76.Google Scholar
Bonani, G, Haas, H, Hawass, Z, Lehner, M, Nakhla, S, Nolan, J, Wenke, R, Wölfli, W. 2001. Radiocarbon dates of Old and Middle Kingdom monuments in Egypt. Radiocarbon 43(3):12971320.Google Scholar
Broecker, WS, Peng, T-H, Östlund, G, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research 90:6953–70.Google Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425–30.Google Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43:355–64.Google Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43:381–9.Google Scholar
Bruins, HJ, van der Plicht, J. 1995. Tell Es-Sultan (Jericho): radiocarbon results of short-lived cereal and multiyear charcoal samples from the end of the Middle Bronze Age. Radiocarbon 37(2):213–20.CrossRefGoogle Scholar
Bruins, HJ, van der Plicht, , Mazar, A. 2003. 14C dates from Tel Rehov: Iron Age chronology, pharaohs, and Hebrew kings. Science 300:315–8.Google Scholar
Cook, ER, Kairiukstis, LA., editors. 1990. Methods of Dendrochronology: applications in the natural sciences. Dordrecht: Kluwer Academic Publishers Google Scholar
Damon, PE. 1995. A note concerning “location-dependent differences in the 14C content of wood”. Radiocarbon 37(2):829–30.CrossRefGoogle Scholar
Damon, PE, Burr, G, Peristykh, AN, Jacoby, GC, D'Arrigo, RD. 1996. Regional radiocarbon effect due to thawing of frozen earth. Radiocarbon 38(3):597602.Google Scholar
Dutta, K, Bhushan, R, Somayajulu, BLK. 2000a. 14C in archived marine shells from the Arabian Sea and the Bay of Bengal. Abstracts of the 17th International Radiocarbon Conference, Judean Hills, Israel, 18–23 June 2000. p 93.Google Scholar
Dutta, K, Bhushan, R, Somayajulu, BLK. 2000b. Anthropogenic radiocarbon in Bay of Bengal: Two decades after GEOSECS. Abstracts of the 17th International Radiocarbon Conference, Judean Hills, Israel, 18–23 June 2000, p.97.Google Scholar
Dutta, K, Bhushan, R, Somayajulu, BLK. 2001. ΔR correction values for the northern Indian Ocean. Radiocarbon 43(2A):483–88.Google Scholar
Eckstein, D. 1969. Entwicklung und Anwendung der Dendrochronologie zur Altersbestimmung der Siedlung Haithabu, .Google Scholar
Facorellis, Y, Maniatis, Y, Kromer, B. 1998. Apparent 14C ages of marine mollusc shells from a Greek Island: calculation of the marine reservoir effect in the Aegean Sea. Radiocarbon 40(2):963–73.Google Scholar
Hallager, E. 1988. Final palatial Crete. An essay in Minoan chronology. In: Damsgaard-Madsen, A, Christiansen, E and Hallager, E., editors. Studies in ancient history and numismatics presented to Rudi Thomsen, Aarhus: Aarhus University Press. p 1121.Google Scholar
Hassan, FA, Robinson, SW. 1987. High-precision radiocarbon chronometry of ancient Egypt, and comparisons with Nubia, Palestine and Mesopotamia. Antiquity 61:119–35.Google Scholar
Hogg, AG, McCormac, FG, Higham, TFG, Reimer, PJ, Baillie, MGL, Palmer, J. 2002. High-precision 14C measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850–950. Radiocarbon (this issue).Google Scholar
Hua, Q, Barbetti, M, Jacobsen, GE, Zoppi, U, Lawson, EM. 2000a. Bomb radiocarbon in annual tree rings from Thailand and Tasmania. In: Proceedings of the Eighth International Conference on Accelerator Mass Spectrometry, Vienna, Austria, 6–10 September, 1999. Nuclear Instruments and Methods in Physics Research B 172:359–65.Google Scholar
Hua, Q, Barbetti, M, Zoppi, U, Fink, D, Watanasak, M, Jacobsen, GE. 2002. Atmospheric radiocarbon offset for the tropics during the Little Ice Age. The 9th International Conference on Accelerator Mass Spectrometry, Nagoya, Japan, 9–13 September 2002.Google Scholar
Hua, Q, Barbetti, M, Zoppi, U, Lawson, EM. 2000b. Regional reduction of atmospheric 14C by upwelling in the tropical Indian Ocean. Abstracts of the 17th International Radiocarbon Conference, Judean Hills, Israel, 18–23 June 2000. p 161.Google Scholar
Keeling, CD. 1968. Carbon dioxide in surface ocean water 4. Global distribution of pCO2 . Journal of Geophysical Research 73:4543–53.Google Scholar
Keenan, DJ. 2002. Why early-historical radiocarbon dates downwind from the Mediterranean are too early. Radiocarbon 44(1):225–37.Google Scholar
Kemp, BJ. 1984. Amarna Reports I. London: Egypt Exploration Society.Google Scholar
Kemp, BJ. 1987. The Amarna workmen's village in retrospect. Journal of Egyptian Archaeology 73:2150.Google Scholar
Kemp, BJ, Merrillees, RS. 1980. Minoan pottery in second millennium Egypt. Mainz am Rhein: Philipp von Zabern.Google Scholar
Kitchen, KA. 1996a. The Third Intermediate Period in Egypt (1100–650 BC). Second revised edition with supplement. Warminster: Aris & Phillips.Google Scholar
Kitchen, KA. 1996b. The historical chronology of ancient Egypt, a current assessment. Acta Archaeologica 67: 113.Google Scholar
Kitchen, KA. 2000. Regnal and genealogical data of Ancient Egypt (Absolute Chronology I). The historical chronology of Ancient Egypt, a current assessment. In: Bietak, M, editor. The synchronisation of civilisations in the Eastern Mediterranean in the second millennium B.C. Vienna: Austrian Academy. p 3952.Google Scholar
Kitchen, KA. 2002. Ancient Egyptian chronology for Aegeanists. Mediterranean Archaeology and Archaeometry 2(2):512.Google Scholar
Knox, FB, McFadgen, BG. 2001. Least-squares fitting smooth curves to decadal radiocarbon calibration data from AD 1145 to 1945. Radiocarbon 43(1):87118. (Corrections Radiocarbon 44(1):395).Google Scholar
Korfmann, M, Kromer, B. 1993. Demircihüyük, Besik-Tepe, Troia—Eine Zwischenbilanz zur Chronologie dreier Orte in Westanatolien. Studia Troica 3:135–71.Google Scholar
Kromer, B, Korfmann, M, Jablonka, P. 2002. Heidelberg radiocarbon dates for Troia I to VIII and Kumtepe. In: Wagner, GA, Pernicka, E, Uerpmann, H-P, editors. Troia and the Troad: scientific approaches. Berlin: Springer.Google Scholar
Kromer, B, Manning, SW, Kuniholm, PI, Newton, MW, Spurk, M, Levin, I. 2001. Regional 14CO2 offsets in the troposphere: magnitude, mechanisms, and consequences. Science 294:2529–32.CrossRefGoogle ScholarPubMed
Kuniholm, PI. 1977. Dendrochronology at Gordion and the Anatolian Plateau. , University of Pennsylvania. Ann Arbor: University Microfilms International.Google Scholar
Kuniholm, PI. 1993. A date-list for Bronze Age and Iron Age monuments based on combined dendrochronological and radiocarbon evidence. In: Mellink, MJ, Porada, E, Özgüç, T, editors. Aspects of art and iconography: Anatolia and its neighbours. Studies in honor of Nimet Özgüç, Ankara: Türk Tarih Kurumu. p 371–3.Google Scholar
Kuniholm, PI. 1994. Long tree-ring chronologies for the eastern Mediterranean. Archaeometry 94: The Proceedings of the 29th International Symposium on Archaeometry. Ankara: TÜBITAK. p 401–9.Google Scholar
Kuniholm, PI. 1996. The prehistoric Aegean: dendrochronological progress as of 1995. Acta Archaeologica 67:327–35.Google Scholar
Kuniholm, PI, Striker, CL. 1982. Dendrochronological investigations in the Aegean and neighboring regions, 1977–1982. Journal of Field Archaeology 10:411–20.Google Scholar
Kuniholm, PI, Striker, CL. 1987. Dendrochronological investigations in the Aegean and neighboring regions, 1983–1986. Journal of Field Archaeology 14:385–98.Google Scholar
Kuniholm, PI, Tarter, SL, Griggs, CB. 1993. Dendrochronological report. In: Summers, GD, editor. Tille Höyük 4, 179–90. Ankara: The British Institute of Archaeology at Ankara.Google Scholar
Kuniholm, PI, Tarter, SL, Newton, MW, Griggs, CB. 1992. Preliminary report on dendrochronological investigations at Porsuk/Ulukisla, Turkey 1987–1989. Syria 69: 379–89.Google Scholar
Lehner, M, Nakhla, S, Hawass, Z, Bonani, G, Wölfli, W, Haas, H, Wenke, R, Nolan, J, Wetterstrom, W. 1999. Dating the pyramids. Archaeology 52(5):2633.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Kromer, B, Barabas, M, Münnich, K. 1987. Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39B:8995.Google Scholar
Manning, SW. 1995. The absolute chronology of the Aegean Early Bronze Age: archaeology, history and radiocarbon. Monographs in Mediterranean Archaeology 1. Sheffield: Sheffield Academic Press.Google Scholar
Manning, SW. 1997. Troy, radiocarbon, and the chronology of the northeast Aegean in the Early Bronze Age. In: Doumas, CG, La Rosa, V, editors. H KAI H: Athens: Scuola Archeologica Italiana di Atene. p 498520.Google Scholar
Manning, SW. 1999. A test of time: the volcano of Thera and the chronology and history of the Aegean and east Mediterranean in the mid-second millennium BC. Oxford: Oxbow Books.Google Scholar
Manning, SW, Bronk Ramsey, C, Doumas, C, Marketou, T, Cadogan, G, Pearson, CL. 2002. New evidence for an early date for the Aegean Late Bronze Age and Thera eruption. Antiquity 76:733–44.Google Scholar
Manning, SW, Kromer, B, Kuniholm, PI, Newton, MW. 2001. Anatolian tree-rings and a new chronology for the east Mediterranean Bronze-Iron Ages. Science 294:2532–5.Google Scholar
Manning, SW, Kromer, B, Kuniholm, PI, Newton, MW. 2003. Confirmation of near-absolute dating of east Mediterranean Bronze-Iron Dendrochronology. Antiquity 77 (25 March, 2003) at: http://antiquity.ac.uk/ProjGall/Manning/manning.html Google Scholar
Manning, SW, Weninger, B. 1992. A light in the dark: archaeological wiggle matching and the absolute chronology of the close of the Aegean Late Bronze Age. Antiquity 66:636–63.CrossRefGoogle Scholar
Manning, SW, Weninger, B, South, AK, Kling, B, Kuniholm, PI, Muhly, JD, Hadjisavvas, S, Sewell, DA, Cadogan, G. 2001. Absolute age range of the Late Cypriot IIC period on Cyprus. Antiquity 75:328–40.Google Scholar
McCormac, FG, Baillie, MGL, Pilcher, JR, Kalin, RM. 1995. Location-dependent differences in the 14C content of wood. Radiocarbon 37(2):395407.Google Scholar
McCormac, FG, Hogg, AG, Higham, TGF, Lynch-Stieglitz, J, Broecker, WS, Baillie, MGL, Palmer, J, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Temporal variation in the interhemispheric 14C offset. Geophysical Research Letters 25:1321–24.Google Scholar
Mercone, D, Thomson, J, Croudace, IW, Siani, G, Paterne, M, Troelstra, S. 2000. Duration of S1, the most recent sapropel in the eastern Mediterranean Sea, as indicated by accelerator mass spectrometry radiocarbon and geochemical evidence. Paleoceanography 15:336–47.Google Scholar
Moran, W. 1992. The Amarna letters. Baltimore: The Johns Hopkins University Press.Google Scholar
Murnane, WJ. 1995. Texts from the Amarna period in Egypt. Atlanta: Scholars Press.Google Scholar
Pearson, GW, Pilcher, JR, Baillie, MGL, Corbet, DM, Qua, F. 1986. High precision 14C measurements of Irish oaks to show the natural 14C variations from AD 1840–5210 BC. Radiocarbon 28:911–34.Google Scholar
Rawlins, D, Pickering, K, Spence, K. 2001. Astronomical orientation of the pyramids. Nature 412:699700.Google Scholar
Reimer, PJ, McCormac, FG. 2002. Marine radiocarbon reservoir corrections for the Mediterranean and Aegean Seas. Radiocarbon 44(1):159–66.Google Scholar
Rohl, D. 1985. A test of time. The Bible—from myth to history. London: Century.Google Scholar
Rozanski, K, Levin, I, Stock, J, Falcon, REG, Rubio, F. 1995. Atmospheric 14C variations in the Equatorial region. Radiocarbon 37(2):509–15.Google Scholar
Schmidt, B. 1987. Dendrochronologie und Ur- und Frühgeschicht. . p 1355.Google Scholar
Shaw, IM. 1985. Egyptian chronology and the Irish oak calibration. Journal of Near Eastern Studies 44:295317.Google Scholar
Siani, G, Paterne, M, Arnold, M, Bard, E, Metivier, B, Tisnerat, N, Bassinot, F. 2000. Radiocarbon reservoir ages in the Mediterranean Sea and Black Sea. Radiocarbon 42(2):271–80.Google Scholar
Siani, G, Paterne, M, Michel, E, Sulpizio, R, Sbrana, A, Arnold, M, Haddad, G. 2001. Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294:1917–20.Google Scholar
Southon, J, Kashgarian, M, Fontugne, M, Metivier, B, Yim, WWS. 2002. Marine reservoir corrections for the Indian Ocean and southeast Asia. Radiocarbon 44(1): 167–80.Google Scholar
Spence, K. 2000. Ancient Egyptian chronology and the astronomical orientation of pyramids. Nature 408: 320–4.Google Scholar
Stanley, DJ. 2000. Radiocarbon dating the artificially contained surfaces of the Rhône deltaic plain, southern France. Journal of Coastal Research 16:1157–61.Google Scholar
Stanley, DJ, Hait, AK. 2000. Deltas, radiocarbon dating, and measurements of sediment storage and subsidence. Geology 28(4):295–8.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25:329–32.Google Scholar
Stuiver, M, Östlund, HG. 1983. GEOSECS Indian Ocean and Mediterranean Radiocarbon. Radiocarbon 25(1): 129.Google Scholar
Stuiver, M, Reimer, PJ, Braziunas, TF. 1998. High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3): 1127–51.Google Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000-0 cal BP Radiocarbon 40(3):1041–83.Google Scholar
Tans, PP et al. 1996. Carbon cycle. In: Hofmann, DJ, Peterson, JT, Rosson, RM, editors. Summary report 1994–1995, Climate Monitoring and Diagnostics Laboratory No. 23. NOAA: DOE. p 2949.Google Scholar
Thomson, J, Mercone, D, de Lange, GJ, van Santvoort, PJM. 1999. Review of recent advances in the interpretation of eastern Mediterranean sapropel S1 from geochemical evidence. Marine Geology 153:7789.Google Scholar
van Geel, B, van der Plicht, J, Kilian, MR, Klaver, ER, Kouwenberg, JHM, Renssen, H, Reynaud-Farrera, I, Waterbolk, HT. 1998. The sharp rise of Δ14C ca. 800 cal BC: Possible causes, related climatic teleconnections and the impact on human environments. Radiocarbon 40(1):535–50 (Corrections Radiocarbon 40(3):1163–4).Google Scholar
Veenhof, KR. 2000. Old Assyrian chronology. Akkadica 119–120:137–50.Google Scholar
Vergnaud-Grazzini, C, Caralp, M, Faugeres, JC, Gonthier, E, Grousset, F, Pujol, C, Saliege, JF. 1989. Mediterranean outflow through the Strait of Gibraltar since 18000 Years BP. Oceanologica Acta 12:305–24.Google Scholar
von Beckerath, J. 1994. Chronologie des ägyptischen Neuen Reiches, Hildesheimer ägyptologische Beiträge 39. Hildesheim: Gerstenberg Verlag.Google Scholar
von Beckerath, J. 1997. Chronologie des pharaonischen Ägypten. Die Zeitbestimmung der ägyptischen Geschichte von der Vorzeit bis 332 v. Chr. Mainz: Philipp von Zabern.Google Scholar
Weninger, B. 1990. Theoretical radiocarbon discrepancies. In: Hardy, DA and Renfrew, AC, editors. Thera and the Aegean world III. Volume three: chronology. London: The Thera Foundation. p 216–31.Google Scholar
Weninger, B. 1997. Studien zur dendrochronologischen Kalibration von archäologischen 14C-Daten. Bonn: Dr. Rudolf Habelt.Google Scholar