Skip to main content Accessibility help
×
Home

Multiple Radiocarbon Dating of Human remains: Clarifying the Chronology and Sequences of Burials in the late Neolithic Dolmen of Oberbipp (Switzerland)

  • Noah Steuri (a1), Inga Siebke (a2), Anja Furtwängler (a3), Sönke Szidat (a4) (a5), Johannes Krause (a3), Sandra Lösch (a2) and Albert Hafner (a1) (a5)...

Abstract

Undisturbed megalithic burials are extremely rare because in addition to human activities, natural disturbances due to water influence and erosion or faunal activity are likely to occur over time. The dolmen of Oberbipp discovered in 2011 provides a unique opportunity for multidisciplinary research since anthropogenic and natural disturbances are minor. Morphological analysis indicates that approximately 42 individuals were buried in the grave chamber. Using archaeological methods alone, it would not have been possible to determine different occupation periods within the inhumations. Neolithic communities often reused dolmen over centuries. Therefore, radiocarbon (14C) dating is the only method that can solve the question of temporal resolution. Fragments of the same bone element (right femora) were analyzed by two (in some cases three) different laboratories to date all inhumations individually. The aim of this study was threefold: (1) to determine the total occupation time of the dolmen (2) to evaluate the sequence of the burials, and (3) to compare the results of the same skeletal element from different laboratories. In total, 79 radiocarbon dating results from three different laboratories of the right femora (n = 32) were obtained. The total time span of the occupation of the dolmen was between 3350 and 2650 BC. The broad application of radiocarbon dating allowed the determination of two occupation periods within the burial.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Multiple Radiocarbon Dating of Human remains: Clarifying the Chronology and Sequences of Burials in the late Neolithic Dolmen of Oberbipp (Switzerland)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Multiple Radiocarbon Dating of Human remains: Clarifying the Chronology and Sequences of Burials in the late Neolithic Dolmen of Oberbipp (Switzerland)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Multiple Radiocarbon Dating of Human remains: Clarifying the Chronology and Sequences of Burials in the late Neolithic Dolmen of Oberbipp (Switzerland)
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author. Email: albert.hafner@iaw.unibe.ch.

Footnotes

Hide All

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

Footnotes

References

Hide All
Ambrose, S. 1993. Isotope analysis of Paleodiets: methodological and interpretive considerations. Food and Nutrition in History and Anthropology 10:59130.
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112.10.1017/S0033822200045069
Brock, F, Wood, R, Higham, TFG, Ditchfield, P, Bayliss, A, Bronk Ramsey, C. 2012. Reliability of nitrogen content (%N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54(3–4):879–86.10.1017/S0033822200047524
Bronk Ramsey, C, Higham, T, Leach, P. 2004. Towards high-precision AMS: progress and limitations. Radiocarbon 46(1):1724.10.1017/S0033822200039308
Bronk Ramsey, C. 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.10.1017/S0033822200033865
Bronk Ramsey, C. 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):10231045.10.1017/S0033822200034093
Cersoy, S, Zazzo, A, Lebon, M, Rofes, J, Zirah, S. 2017. Collagen extraction and stable isotope analysis of small vertebrate bones: a comparative approach. Radiocarbon 59(3):679694.10.1017/RDC.2016.82
Dee, M, Bronk Ramsey, C. 2000. Refinement of graphite target production at ORAU. Nuclear Instruments and Methods in Physics Research B 172(1–4):449453.10.1016/S0168-583X(00)00337-2
Falquet, C., Burri-Wyser, E. 2016. Le Dolmen d’Onnens, Praz Berthoud. Cahiers d’archéologie romande 159:113174.
Fülöp, R-H, Heinze, S, John, S, Rethemeyer, J. 2013. Ultrafiltration of bone samples is neither the problem nor the solution. Radiocarbon 55(2–3):491500.10.1017/S0033822200057623
Hafner, A, Suter, PJ. 2012. Das Neolithikum in der Schweiz. Journal of Neolithic Archaeology. doi.org/10.12766/jna.2003.4.
Kromer, B, Lindauer, S, Synal, H, Wacker, L. 2013. MAMS – A new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nuclear Instruments and Methods in Physics Research B 294:1113.10.1016/j.nimb.2012.01.015
Lindauer, S, Tomasto-Cagigao, E, Fehren-Schmitz, L. 2015. The skeletons of Lauricocha: new data on old bones. Journal of Archaeological Science: Reports 4:387394.10.1016/j.jasrep.2015.10.004
Ramstein, M. 2014. Ein neolithischer Dolmen an der Steingasse in Oberbipp. Archäologie Schweiz 37:415.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, C, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.10.2458/azu_js_rc.55.16947
Siebke, I, Campana, L, Ramstein, M, Furtwängler, A, Hafner, A, Lösch, S. 2018. The application of different 3D-scan-systems and photogrammetry at an excavation – A Neolithic dolmen from Switzerland. Digital Applications in Archaeology and Cultural Heritage 10. doi.org/10.1016/j.daach.2018.e00078.
Siebke, I, Steuri, N, Furtwängler, A, Ramstein, M, Arenz, G, Hafner, A, Krause, J, and Lösch, S. 2019. Who lived on the Swiss Plateau around 3300 BCE? – Analyses of commingled human skeletal remains from the dolmen of Oberbipp. International Journal of Osteoarchaeology. doi.org/10.1002/oa.2791.
Stöckli, W 1995. Geschichte des Neolithikums in der Schweiz. Die Schweiz vom Paläolithikum bis zum Mittelalter SPM II:1952.
Stöckli, W, Moinat, P. 1995. Glaube und Grabriten. Die Schweiz vom Paläolithikum bis zum Mittelalter SPM II:231258.
Szidat, S, Salazar, G, Vogel, E, Battaglia, M, Wacker, L, Synal, H-A, Türler, A. 2014. 14C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 56(2):561566.10.2458/56.17457
Szidat, S, Vogel, E, Gubler, R, Lösch, S. 2017: Radiocarbon dating of bones at the LARA Laboratory in Bern, Switzerland. Radiocarbon 59(3):831842.10.1017/RDC.2016.90
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26(6):687695.10.1006/jasc.1998.0385

Keywords

Multiple Radiocarbon Dating of Human remains: Clarifying the Chronology and Sequences of Burials in the late Neolithic Dolmen of Oberbipp (Switzerland)

  • Noah Steuri (a1), Inga Siebke (a2), Anja Furtwängler (a3), Sönke Szidat (a4) (a5), Johannes Krause (a3), Sandra Lösch (a2) and Albert Hafner (a1) (a5)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed