Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T15:16:55.534Z Has data issue: false hasContentIssue false

Modern and Pleistocene Reservoir Ages Inferred from South Pacific Corals

Published online by Cambridge University Press:  18 July 2016

G S Burr*
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Physics Department, Tucson, Arizona 85721-0081, USA Department of Geosciences, National Taiwan University, Taipei, Taiwan
J W Beck
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Physics Department, Tucson, Arizona 85721-0081, USA
Thierry Corrège
Affiliation:
Université Bordeaux 1, Avenue des Facultés 33405 Talence Cedex, France
G Cabioch
Affiliation:
IRD, UMR LOCEAN, Centre d'Ile de France 32, avenue Henri Varagnat 93143 Bondy Cedex, France
F W Taylor
Affiliation:
Institute for Geophysics, J.J. Pickle Research Campus, Bldg. 196, 10100 Burnet Road (R2200), Austin, Texas 78758-4445, USA
D J Donahue
Affiliation:
NSF-Arizona AMS Laboratory, University of Arizona, Physics Department, Tucson, Arizona 85721-0081, USA
*
Corresponding author. Email: burr@u.arizona.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper presents radiocarbon results from modern South Pacific corals from the Marquesas Islands, Vanuatu, Papua New Guinea (PNG), and Easter Island. All of the measurements are from pre-bomb Porites corals that lived during the 1940s and 1950s. The data reflect subannual to multiannual surface ocean 14C variability and allow for precise, unambiguous reservoir age determinations. The results are compared with published values from other coral records throughout the South Pacific, with striking consistency. By comparisons with other published values, we identify 3 South Pacific regions with uniform pre-bomb reservoir ages (1945 to 1955). These are 1) the Central Equatorial South Pacific (361.6 − 8.2 14C yr, 2 σ); 2) the Western Equatorial South Pacific (322.1 − 8.6 14C yr, 2 σ); and 3) the subtropical Pacific (266.8 − 13.8 14C yr, 2 σ).

Type
Calibration
Copyright
Copyright © 2009 by the Arizona Board of Regents on behalf of the University of Arizona 

References

REFERENCES

Bonjean, F, Lagerloef, GSE. 2002. Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. Journal of Physical Oceanography 32(10):2938–54.Google Scholar
Brown, T, Farwell, GW, Grootes, PM, Schmidt, FH, Stuiver, M. 1993. Intra-annual variability of the radiocarbon content of corals from the Galapagos Islands. Radiocarbon 35(2):245–51.Google Scholar
Burr, GS, Beck, JW, Taylor, FW, Récy, J, Edwards, RL, Cabioch, G, Corrège, T, Donahue, DJ, O'Malley, JM. 1998. A coral-based radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40(3):1093–105.Google Scholar
Burr, GS, Galang, C, Taylor, FW, Gallup, C, Edwards, RL, Cutler, K, Quirk, B. 2004. Radiocarbon results from a 13 kyr BP coral from the Huon Peninsula, Papua New Guinea. Radiocarbon 46(3):1211–24.CrossRefGoogle Scholar
Cheng, H, Edwards, RL, Hoff, J, Gallup, CD, Richards, DA, Asmerom, Y. 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology 169:1733.Google Scholar
Corrège, T, Gagan, MK, Beck, JW, Burr, GS, Cabioch, G, Cornec, F. 2004. Interdecadal variation in the extent of South Pacific tropical waters during the Younger Dryas event. Nature 428(6986):927–9.Google Scholar
Craig, H. 1954. Carbon 13 in plants and the relationship between carbon 13 and carbon 14 variations in nature. Journal of Geology 62:115–49.CrossRefGoogle Scholar
Craig, H. 1957. The natural distribution of carbon and the exchange time of carbon between the atmosphere and sea. Tellus 9:117.Google Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, F, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration and comparison to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46(3):1127–60.Google Scholar
Donahue, DJ, Linick, TW, Jull, AJT. 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon 32(2):135–42.CrossRefGoogle Scholar
Druffel, ERM. 1981. Radiocarbon in annual coral rings from the eastern tropical Pacific Ocean. Geophysical Research Letters 8(1):5962.Google Scholar
Druffel, ERM, Griffin, S. 1993. Large variations of surface ocean radiocarbon: evidence of circulation changes in the southwestern Pacific. Journal of Geophysical Research 98(C11):20,24959.Google Scholar
Druffel, ERM, Griffin, S. 1995. Regional variability of surface ocean radiocarbon from southern Great Barrier Reef corals. Radiocarbon 37(2):517–24.CrossRefGoogle Scholar
Druffel, ERM. 1997. Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proceedings of the National Academy of Sciences USA 94(16):8354–61.Google Scholar
Druffel, ERM, Griffin, S. 1999. Variability of surface ocean radiocarbon and stable isotopes in the southwestern Pacific. Journal of Geophysical Research 104(C10):23,60713.CrossRefGoogle Scholar
Druffel, ERM, Griffin, S, Beaupré, SR, Dunbar, RB. 2007. Oceanic climate and circulation changes during the past four centuries from radiocarbon in corals. Geophysical Research Letters 34, L09601, doi: 10.1029/2006GL028681.Google Scholar
Edwards, RL, Chen, JH, Wasserburg, GJ. 1987. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81(2–3):175–92.Google Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260(5110):962–8.Google Scholar
Fallon, SJ, Guilderson, TP. 2008. Surface water processes in the Indonesian throughflow as documented by a high-resolution coral Δ14C record. Journal of Geophysical Research 113, C09001, doi: 10.1029/2008JC004722.Google Scholar
Fallon, SJ, Guilderson, TP, Caldeira, K. 2003. Carbon isotope constraints on vertical mixing and air-sea CO2 exchange. Geophysical Research Letters 30(24):2289–92.Google Scholar
Franke, J, Paul, A, Schulz, M. 2008. Modeling variations of marine reservoir ages during the last 45 000 years. Climate of the Past 4(2):125–36.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.CrossRefGoogle Scholar
Grottoli, AG, Gille, ST, Druffel, ERM, Dunbar, RB. 2003. Decadal timescale shift in the 14C record of a central equatorial Pacific coral. Radiocarbon 45(1):91–9.CrossRefGoogle Scholar
Guilderson, TP, Schrag, DP. 1998. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Niño. Science 281(5374):240–3.Google Scholar
Guilderson, TP, Schrag, DP, Kashgarian, M, Southon, J. 1998. Radiocarbon variability in the western equatorial Pacific inferred from a high-resolution coral record from Nauru Island. Journal of Geophysical Research 103(C11):24,64150.Google Scholar
Guilderson, TP, Caldeira, K, Duffy, PB. 2000a. Radiocarbon as a diagnostic tracer in ocean and carbon cycle modeling. Global Biogeochemical Cycles 14(3):887902.Google Scholar
Guilderson, TP, Schrag, DP, Goddard, E, Kashgarian, M, Wellington, GM, Linsley, BK. 2000b. Southwest subtropical Pacific surface water radiocarbon in a high-resolution coral record. Radiocarbon 42(2):249–56.Google Scholar
Guilderson, TP, Schrag, DP, Cane, MA. 2004. Surface water mixing in the Solomon Sea as documented by a high-resolution coral 14C record. Journal of Climate 17(5):1147–56.Google Scholar
Hua, Q, Barbetti, M, Jacobsen, GE, Zoppi, U, Lawson, EM. 2000. Bomb radiocarbon in annual tree rings from Thailand and Australia. Nuclear Instruments and Methods in Physics Research B 172(1–4):359–65.Google Scholar
Hua, Q, Barbetti, M, Zoppi, U, Chapman, DM, Thomson, B. 2003. Bomb radiocarbon in tree rings from New South Wales, Australia: implications for dendrochronology, atmospheric transport, and air-sea exchange of CO2 . Radiocarbon 45(3):431–47.Google Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.CrossRefGoogle Scholar
Matsumoto, K, Sarmiento, JL, Key, RM, Aumont, O, Bullister, JL, Caldeira, K, Campin, J-M, Doney, C, Drange, H, Dutay, J-C, Follows, M, Gao, Y, Gnanadesikan, A, Gruber, N, Ishida, A, Joos, F, Lindsay, K, Maier-Reimer, E, Marshall, JC, Matear, RJ, Monfray, P, Mouchet, A, Najjar, R, Plattner, G-K, Schlitzer, R, Slater, R, Swathi, PS, Totterdell, IJ, Weirig, M-F, Yamanaka, Y, Yool, A, Orr, JC. 2004. Evaluation of ocean carbon cycle models with data-based metrics. Geophysical Research Letters 31, L07303, doi: 10.1029/2003GL018970.Google Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCAL04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):1087–92.Google Scholar
McGregor, HV, Gagan, MK, McCulloch, MT, Hodge, E, Mortimer, G. 2008. Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea. Quaternary Geochronology 3(3):213–25.Google Scholar
Meissner, KJ. 2007. Younger Dryas: a data to model comparison to constrain the strength of the overturning circulation. Geophysical Research Letters 34, L21705, doi: 10.1029/2007GL031304.Google Scholar
Moore, MD, Schrag, DP, Kashgarian, M. 1997. Coral radiocarbon constraints on the source of the Indonesian throughflow. Journal of Geophysical Research 102(C6):12,35965.CrossRefGoogle Scholar
Müller, SA, Joos, F, Edwards, NR, Stocker, TF. 2006. Water mass distribution and ventilation time scales in a costefficient, three-dimensional ocean model. Journal of Climate 19(21):5479–99.Google Scholar
Oeschger, H, Siegenthaler, U, Schotterer, U, Gugelman, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–92.Google Scholar
Olsson, IU. 1970. The use of oxalic acid as a standard. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. Nobel Symposium 12, Uppsala, 11–15 August 1969. New York: John Wiley & Sons. p 17.Google Scholar
Paterne, M, Ayliffe, LK, Arnold, M, Cabioch, G, Tisnerat-Laborde, N, Hatte, C, Douville, E, Bard, E. 2004. Paired 14C and 230Th/U dating of surface corals from the Marquesas and Vanuatu (sub-equatorial Pacific) in the 3000 to 15,000 cal yr interval. Radiocarbon 46(2):551–66.Google Scholar
Petchey, F, Anderson, A, Zondervan, A, Ulm, S, Hogg, A. 2008. New marine ΔR values for the South Pacific Subtropical Gyre region. Radiocarbon 50(3):373–97.CrossRefGoogle Scholar
Reimer, RW, Reimer, PJ. 2006. Marine reservoir corrections and the calibration curve. PAGES News 14(3):12–3.Google Scholar
Revelle, R, Suess, HE. 1957. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during th past decades. Tellus 9:1827.Google Scholar
Rodgers, K, Aumont, O, Madec, G, Menkes, C, Blanke, B, Monfray, P, Orr, JC, Schrag, DP. 2004. Radiocarbon as a thermocline proxy for the eastern equatorial Pacific. Geophysical Research Letters 31, L14314, doi: 10.1029/2004GL019764.Google Scholar
Schmidt, A, Burr, GS, Taylor, FW, O'Malley, J, Beck, JW. 2004. A semiannual radiocarbon record of a modern coral from the Solomon Islands. Nuclear Instruments and Methods in Physics Research B 223–224:420–7.Google Scholar
Singarayer, JS, Richards, DA, Ridgwell, A, Valdes, PJ, Austin, WEN, Beck, JW. 2008. An oceanic origin for the increase of atmospheric radiocarbon during the Younger Dryas. Geophysical Research Letters 35, L14707, doi: 10.1029/2008GL034074.Google Scholar
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2B):9801021.Google Scholar
Toggweiler, JR, Dixon, K, Broecker, WS. 1991. The Peru upwelling and the ventilation of the South Pacific thermocline. Journal of Geophysical Research 96(C11):20,46797.Google Scholar