Skip to main content Accessibility help
×
Home

Methods for Summarizing Radiocarbon Datasets

  • Christopher Bronk Ramsey (a1)

Abstract

Bayesian models have proved very powerful in analyzing large datasets of radiocarbon (14C) measurements from specific sites and in regional cultural or political models. These models require the prior for the underlying processes that are being described to be defined, including the distribution of underlying events. Chronological information is also incorporated into Bayesian models used in DNA research, with the use of Skyline plots to show demographic trends. Despite these advances, there remain difficulties in assessing whether data conform to the assumed underlying models, and in dealing with the type of artifacts seen in Sum plots. In addition, existing methods are not applicable for situations where it is not possible to quantify the underlying process, or where sample selection is thought to have filtered the data in a way that masks the original event distribution. In this paper three different approaches are compared: “Sum” distributions, postulated undated events, and kernel density approaches. Their implementation in the OxCal program is described and their suitability for visualizing the results from chronological and geographic analyses considered for cases with and without useful prior information. The conclusion is that kernel density analysis is a powerful method that could be much more widely applied in a wide range of dating applications.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Methods for Summarizing Radiocarbon Datasets
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Methods for Summarizing Radiocarbon Datasets
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Methods for Summarizing Radiocarbon Datasets
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. Email: christopher.ramsey@rlaha.ox.ac.uk.

Footnotes

Hide All

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016

Footnotes

References

Hide All
Andersen, KK, Azuma, N, Barnola, J-M, Bigler, M., Biscaye, P, Caillon, N, Chappellaz, J, Clausen, HB, Dahl-Jensen, D, Fischer, H, et al. 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147151.
Armit, I, Swindles, GT, Becker, K. 2013. From dates to demography in later prehistoric Ireland? Experimental approaches to the meta-analysis of large 14C data-sets. Journal of Archaeological Science 40(1):433438.
Armit, I, Swindles, GT, Becker, K, Plunkett, G, Blaauw, M. 2014. Rapid climate change did not cause population collapse at the end of the European Bronze Age. Proceedings of the National Academy of Sciences 111(48):1704517049.
Bamforth, DB, Grund, B. 2012. Radiocarbon calibration curves, summed probability distributions, and early Paleoindian population trends in North America. Journal of Archaeological Science 39(6):17681774.
Bayliss, A, Bronk Ramsey, C, van der Plicht, J, Whittle, A. 2007. Bradshaw and Bayes: towards a timetable for the Neolithic. Cambridge Archaeological Journal 17(S1):128.
Bigler, M. 2004. Hochaufl ̈osende Spurenstoffmessungen an polaren Eisbohrkernen: Glaziochemis- che und klimatische Prozessstudien [unpublished PhD dissertation]. University of Bern, Switzerland.
Botev, ZI, Grotowski, JF, Kroese, DP. 2010. Kernel density estimation via diffusion. Annals of Statistics 38(5):29162957.
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.
Bronk Ramsey, C, Lee, S. 2013. Recent and Planned Developments of the Program OxCal. Radiocarbon 55(2-3):720730.
Buchanan, B, Collard, M, Edinborough, K. 2008. Paleoindian demography and the extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences 105(33):1165111654.
Buck, CE, Litton, CD, Smith, AFM. 1992. Calibration of radiocarbon results pertaining to related archaeological events. Journal of Archaeological Science 19(5):497512.
Contreras, DA, Meadows, J. 2014. Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. Journal of Archaeological Science 52:591608.
Culleton, BJ. 2008. Crude demographic proxy reveals nothing about Paleoindian population. Proceedings of the National Academy of Sciences. E111.
Gilks, WR, Richardson, S, Spiegelhalter, DJ. 1996. Markov Chain Monte Carlo in Practice. London:Chapman & Hall.
Ho, SYW, Shapiro, B. 2011. Skyline-plot methods for estimating demographic history from nucleotide sequences. Molecular Ecology Resources 11(3):423434.
Karlsberg, AJ. 2006. Statistical modeling for robust and flexible chronology building [PhD thesis]. University of Sheffield.
Kerr, T, McCormick, F. 2014. Statistics, sunspots and settlement: influences on sum of probability curves. Journal of Archaeological Science 41:493501.
Lee, S, Bronk Ramsey, C. 2012. Development and application of the trapezoidal model for archaeological chronologies. Radiocarbon 54(1):107122.
Loftus, E, Sealy, J, Lee-Thorp, J. 2016. New radiocarbon dates and Bayesian models for Nelson Bay Cave and Byneskranskop 1: implications for the South African Later Stone Age Sequence. Radiocarbon 58(02):365381.
MacDonald, GM, Beilman, DW, Kremenetski, KV, Sheng, Y, Smith, LC, Velichko, AA. 2006. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314(5797):285288.
Molak, M, Suchard, MA, Ho, SYW, Beilman, DW, Shapiro, B. 2015. Empirical calibrated radiocarbon sampler: a tool for incorporating radiocarbon-date and calibration error into Bayesian phylogenetic analyses of ancient DNA. Molecular Ecology Resources 15(1):8186.
Needham, S, Bronk Ramsey, C, Coombs, D, Cartwright, C, Pettitt, PB. 1998. An independent chronology for British Bronze Age metalwork: the results of the Oxford Radiocarbon Accelerator Programme. Archaeological Journal 154:55107.
Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Statist 33(3):10651076.
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, ML, Johnsen, SJ, Larsen, LB, Dahl-Jensen, D, Bigler, M, R̈othlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatte, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.
Rosenblatt, M. 1956. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist 27(3):832837.
Rubin, DB. 1981. The Bayesian Bootstrap. The Annals of Statistics 9(1):130134.
Shennan, S. 2013. Demographic continuities and discontinuities in Neolithic Europe: evidence, methods and implications. Journal of Archaeological Method and Theory 20(2):300311.
Silverman, BW. 1986. Density Estimation for Statistics and Data Analysis. Volume 26. CRC Press.
Stuart, AJ, Kosintsev, P, Higham, T, Lister, AM. 2004. Pleistocene to Holocene extinction dynamics in giant deer and woolly mammoth. Nature 431(7009):684689.
Svensson, A, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Davies, S, Johnsen, SJ, Muscheler, R, Parrenin, F, Rasmussen, SO, et al. 2008. A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past 4(1):4757.
Timpson, A, Colledge, S, Crema, E, Edinborough, K, Kerig, T, Manning, K, Thomas, MG, Shennan, S. 2014. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. Journal of Archaeological Science 52:549557.
Ukkonen, P, Aaris-Sørensen, K, Arppe, L, Clark, P, Daugnora, L, Lister, A. Lõugas, L, Seppa, H, Sommer, R, Stuart, A, et al. 2011. Woolly mammoth (Mammuthus primigenius Blum.) and its environment in northern Europe during the last glaciation. Quaternary Science Reviews 30(5):693712.
Williams, NA. 2012. The use of summed radiocarbon probability distributions in archaeology: a review of methods. Journal of Archaeological Science 39(3):578589.
Zhang, X, King, ML, Hyndman, RJ. 2006. A Bayesian approach to bandwidth selection for multivariate kernel density estimation. Computational Statistics & Data Analysis 50(11):30093031.

Keywords

Methods for Summarizing Radiocarbon Datasets

  • Christopher Bronk Ramsey (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed