Skip to main content Accessibility help
×
Home

Measurement of Biocarbon in Flue Gases Using 14C

  • K M Hämäläinen (a1), H Jungner (a1), O Antson (a2), J Räsänen (a2), K Tormonen (a2) and J Roine (a2)...

Abstract

A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The 14C content in CO2 was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that 14C measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Measurement of Biocarbon in Flue Gases Using 14C
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Measurement of Biocarbon in Flue Gases Using 14C
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Measurement of Biocarbon in Flue Gases Using 14C
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: Kai.Hamalainen@helsinki.fi

References

Hide All
Alakangas, E. 2000. Suomessa Käytettävien Polttoaineiden Ominaisuuksia [Properties of fuels used in Finland]. VTT Tiedotteita - Meddelanden - Research Notes 2045. Espoo: Technical Research Centre of Finland (VTT). 172 p + appendix 17 p.
ASTM International. 2005. Method D 6866-05: Determining the biobased content of natural range materials using radiocarbon and isotope ratio mass spectrometry analysis. West Conshohocken, Pennsylvania, USA: ASTM International.
Clayton, GD, Arnold, JR, Patty, FA. 1955. Determination of sources of particulate atmospheric carbon. Science 122(3173):751–3.
Currie, LA, Eglinton, TI, Benner, BA, Pearson, A. 1997. Radiocarbon “dating” of individual chemical compounds in atmospheric aerosol: first results comparing direct isotopic and multivariate statistical apportionment of specific polycyclic aromatic hydrocarbons. Nuclear Instruments and Methods in Physics Research B 123(1–4):475–86.
Deines, P. 1980. The isotopic composition of reduced organic carbon. In: Fritz, P, Fontes, JCh, editors. Handbook of Environmental Isotope Geochemistry. Volume 1. The Terrestrial Environment A. New York: Elsevier. p 373–84.
Kuc, T, Zimnoch, M. 1998. Changes of the CO2 sources and sinks in a polluted urban area (southern Poland) over the last decade, derived from the carbon isotope composition. Radiocarbon 40(1):417–23.
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.
Levin, I, Kromer, B. 1997. Twenty years of atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Münnich, M, Berdau, D, Vogel, JC, Münnich, KO. 1985. 25 years of tropospheric 14C observations in Central Europe. Radiocarbon 27(1):119.
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194; doi:10.1029/2003GL018477.
Mielikäinen, K. 1997. Metsän kasvattaminen. In: Häyrynen, M, editor. Tapion Taskukirja. 23rd edition. Jyväskylä: Metsätalouden kehittämiskeskus Tapio. p204–15.
Noakes, J, Norton, G, Culp, R, Nigam, M, Dvoracek, D. 2005. A comparison of analytical methods for the certification of biobased products. In: Chałupnik, S, Schönhofer, F, Noakes, J, editors. LSC 2005: Advances in Liquid Scintillation Counting. Tucson: Radiocarbon, p 259–71.
Norton, GA, Devlin, SL. 2006. Determining the modern carbon content of biobased products using radiocarbon analysis. Biosource Technology 97(16):2084–90.
Slater, JF, Currie, LA, Dibb, JE, Benner, BA Jr. 2002. Distinguishing the relative contribution of fossil fuel and biomass combustion aerosols deposited at Summit, Greenland through isotopic and molecular characterization of insoluble carbon. Atmospheric Environment 36(28):4463–77.
Slota, PJ Jr, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303–6.
Stuiver, M, Quay, PD. 1981. Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters 53(3):349–62.
Szidat, S, Jenk, TM, Gäggeler, HW, Synal, H-A, Fisseha, R, Baltensperger, U, Kalberer, M, Samburova, V, Reimann, S, Kasper-Giebl, A, Hajdas, I. 2004. Radiocarbon (14C)-deduced biogenic and anthropogenic contributions to organic carbon (OC) of urban aerosols from Zurich, Switzerland. Atmospheric Environment 38(24):4035–44.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed