Skip to main content Accessibility help
×
Home

LUMINESCENCE AND RADIOCARBON DATING OF MORTARS AT MILANO-BICOCCA LABORATORIES

  • Laura Panzeri (a1) (a2), Francesco Maspero (a1) (a2), Anna Galli (a1) (a2) (a3), Emanuela Sibilia (a1) (a2) and Marco Martini (a1) (a2)...

Abstract

This work shows the results of optically stimulated luminescence (OSL) and radiocarbon (14C) dating applied to mortars of historical structures in northern Italy. All the results are compared with archaeological evidence and thermoluminescence (TL) dating of bricks. The main issue for OSL mortar dating is that the quartz grains contained in the mortar may be only partially bleached, leading to an overestimation of the sample age. In order to identify the best protocol to apply, both multi-grain (MG) and single grain (SG) methods were used. The minimum age model (MAM) statistical approach was applied to refine their accuracy. However, the identification of the bleached grains is not always successful, indicating that further investigations are needed to develop suitable dating protocol. For the 14C technique, a crucial aspect is the selection of anthropogenic calcite. In this work the mortars were treated using a Cryosonic method to select anthropogenic calcite from raw material, and the obtained powder was sieved to select the finer fraction. Unfortunately, only in two cases an acceptable amount of sample could be obtained. All the fractions were dated via accelerator mass spectrometry (AMS), and the results compared with independently obtained dates. The results show that the execution of the dating analysis requires previous characterizations to assess the nature of the mortar components and avoid unusable fractions.

Copyright

Corresponding author

*Corresponding author. Email: francesco.maspero@unimib.it

Footnotes

Hide All

Selected Papers from the Mortar Dating International Meeting (MoDIM), Bordeaux, France, 25–27 Oct. 2018

Footnotes

References

Hide All
Addis, A, Secco, M, Marzaioli, F, Artioli, G, Arnaus, AC, Passariello, I, Terrasi, F, Brogiolo, GP. 2019. Selecting the most reliable C-14 dating material inside mortars: The origin of the Padua cathedral. Radiocarbon 61(2):375393.
Aitken, MJ. 1985. Thermoluminescence dating. London: Academic Press.
Bailey, RM, Smith, BW, Rhodes, EJ. 1997. Partial bleaching and the decay form characteristics of quartz OSL. Radiat Meas 27(2):123136.
Bell, WT. 1979. Thermoluminescence dating: radiation dose-rate data. Archaeometry 21:243245.
Boaretto, E, Poduska, KM. 2013. Materials science challenges in radiocarbon dating: The case of archaeological plasters. JOM-J Min Met Mat S 65(4):481488.
Botter-Jensen, L, Murray, AS. 2002. Optically stimulated luminescence in retrospective dosimetry. Radiat Prot Dosim 101(1–4):309314.
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337360.
Fleming, S. 1970. Thermoluminescence dating: Refinement of the quartz inclusion method. Archaeometry 12:133143.
Galbraith, RF, Roberts, RG, Laslett, GM, Yoshida, H, Olley, JM. 1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia: Part I. Archaeometry 41(2).
Galli, A, Martini, M, Maspero, F, Panzeri, L, Sibilia, E. 2014. Surface dating of bricks, an application of luminescence techniques. Eur Phys J Plus. 129(5).
Guérin, G, Mercier, N, Adamiec, G. 2011. Dose-rate conversion factors: Update. Ancient TL 29:5–8.
Guibert, P, Christophe, C, Urbanova, P, Guerin, G, Blain, S. 2017. Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: Towards a new tool for single grain OSL dating of poorly bleached mortars. Radiat Meas 107:4857.
Hajdas, I, Lindroos, A, Heinemeier, J, Ringbom, A, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Artioli, G, Addis, A, Secco, M, Michalska, D, Czernik, J, Goslar, T, Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Maspero, F, Panzeri, L, Galli, A, Urbanová, P, Guibert, P. 2017. Preparation and dating of mortar samples-mortar dating inter-comparison study (MODIS). Radiocarbon 59(6):18451858.
Hayen, R, Van Strydonck, M, Fontaine, L, Boudin, M, Lindroos, A, Heinemeier, J, Ringbom, A, Michalska, D, Hajdas, I, Hueglin, S, Marzaioli, F, Terrasi, F, Passariello, I, Capano, M, Maspero, F, Panzeri, L, Galli, A, Artioli, G, Addis, A, Secco, M, Boaretto, E, Moreau, C, Guibert, P, Urbanová, P, Czernik, J, Goslar, T, Caroselli, M. 2017. Mortar dating methodology: Assessing recurrent issues and needs for further research. Radiocarbon 59(6):18591871.
Marzaioli, F, Lubritto, C, Nonni, S, Passariello, I, Capano, M, Terrasi, F. 2011. Mortar radiocarbon dating: Preliminary accuracy evaluation of a novel methodology. Anal Chem 83(6):20382045.
Medialdea, A, Thomsen, KJ, Murray, AS, Benito, G. 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Quat Geochronol 22:1124.
Mejdahl, V. 1985. Thermoluminescence dating based on feldspars. Nucl Tracks Rad Meas 10:133136.
Murray, AS, Roberts, RG. 1997. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth Planet Sc Lett 152(1–4):163180.
Murray, AS, Wintle, AG. 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Rad Meas 32(1):5773.
Panzeri, L. 2013. Mortar and surface dating with optically stimulated luminescence (OSL): Innovative techniques for the age determination of buildings. Nuovo Cimento C 36C:205216.
Panzeri, L, Cantu, M, Martini, M, Sibilia, E. 2017. Application of different protocols and age-models in OSL dating of earthen mortars. Geochronometria 44(1):341351.
Panzeri, L, Caroselli, M, Galli, A, Lugli, S, Martini, M, Sibilia, E. 2019. Mortar OSL and brick TL dating: The case study of the UNESCO World Heritage Site of Modena. Quat Geochronol 49:236241.
Preusser, F, Degering, D, Fuchs, M, Hilgers, A, Kadereit, A, Klasen, N, Krbetschek, M, Richter, D, Spencer, J. 2008. Luminescence dating: Basics, methods and application. EGQSJ 57:95149.
Regev, L, Poduska, KM, Addadi, L, Weiner, S, Boaretto, E. 2010. Distinguishing between calcites formed by different mechanisms using infrared spectrometry: Archaeological applications. J Archaeol Sci 37(12):30223029.
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatt, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):11111150.
Thomsen, KJ, Murray, AS, Botter-Jensen, L, Kinahan, J. 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiat Meas 42(3):370379.
Tirelli, G, Lugli, S, Galli, A, Hajdas, I, Lindroos, A, Martini, M, Maspero, F, Olsen, J, Ringbom, Å, Sibilia, E, Caroselli, M, Silvestri, E, Panzeri, L. 2020. Integrated dating of the construction and restoration of the Modena cathedral vaults (Northern Italy): preliminary Results. Radiocarbon, in press.
Toffolo, MB, Regev, L, Dubernet, S, Lefrais, Y, Boaretto, E. 2019. FTIR-based crystallinity assessment of aragonite-calcite mixtures in archaeological lime binders altered by diagenesis. Mineral-Basel 9(2).
Vogel, J, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289293.
Zimmerman, DW. 1971. Thermoluminescent dating using fine grains from pottery. Archaeometry 13:2952.

Keywords

LUMINESCENCE AND RADIOCARBON DATING OF MORTARS AT MILANO-BICOCCA LABORATORIES

  • Laura Panzeri (a1) (a2), Francesco Maspero (a1) (a2), Anna Galli (a1) (a2) (a3), Emanuela Sibilia (a1) (a2) and Marco Martini (a1) (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed