Skip to main content Accessibility help
×
Home

A LOW-COST CONTINUOUS-FLOW GAS INTERFACE FOR COUPLING AN ELEMENTAL ANALYZER WITH A MICADAS AMS: GAS FLOW MATHEMATICAL MODEL AND FIRST RESULTS

  • Gary Salazar (a1) and Sönke Szidat (a1)

Abstract

A fully automatic continuous-flow gas injection interface was built to couple an elemental analyzer with a MICADAS accelerator mass spectrometer (AMS) as a low-cost option that does not require an absorber trap for CO2 injection. The complication of the variable ion current during gas injection can be overcome by understanding and controlling the mass flow-dependent ionization yield. The time-varying CO2 concentrations and carbon mass flows are estimated with a mathematical model in order to investigate their relationship with the abundant isotope (12C) signal. This model is based on a complete CO2 diffusion equation and instantaneous mass flow. It shows a good agreement between model calculations and the measurements. A reversible suppression of the formation of ions occurs, if the carbon mass flow exceeds 2.0–2.3 µg C/min. This result repeats for different injection capillaries and for different carrier volumetric flow rates.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A LOW-COST CONTINUOUS-FLOW GAS INTERFACE FOR COUPLING AN ELEMENTAL ANALYZER WITH A MICADAS AMS: GAS FLOW MATHEMATICAL MODEL AND FIRST RESULTS
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A LOW-COST CONTINUOUS-FLOW GAS INTERFACE FOR COUPLING AN ELEMENTAL ANALYZER WITH A MICADAS AMS: GAS FLOW MATHEMATICAL MODEL AND FIRST RESULTS
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A LOW-COST CONTINUOUS-FLOW GAS INTERFACE FOR COUPLING AN ELEMENTAL ANALYZER WITH A MICADAS AMS: GAS FLOW MATHEMATICAL MODEL AND FIRST RESULTS
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author. Email: gary.salazar@dcb.unibe.ch.

Footnotes

Hide All

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

Footnotes

References

Hide All
Agrios, K, Salazar, G, Szidat, S. 2017. A continuous-flow gas interface of a thermal/optical analyzer with 14C AMS for source apportionment of atmospheric aerosols. Radiocarbon 59(3):921932.
Agrios, K, Salazar, G, Zhang, Y, Uglietti, C, Battaglia, M, Luginbühl, M et al. 2015. Online coupling of pure O2 thermo-optical methods – 14C AMS for source apportionment of carbonaceous aerosols. Nuclear Instruments and Methods in Physics Research B 361:288293.
Bard, E, Tuna, T, Fagault, Y, Bonvalot, L, Wacker, L, Fahrni, S, Synal, H-A. 2015. AixMICADAS, the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence, France. Nuclear Instruments and Methods in Physics Research B 361:8086.
Bogatyrev, AF, Nezovitina, MA. 2012. Interdiffusion coefficients in actual gaseous systems. Journal of Engineering Physics and Thermophysics 85(5):12081214.
Bosch, C, Andersson, A, Kruså, M, Bandh, C, Hovorková, I, Klánová, J et al. 2015. Source apportionment of polycyclic aromatic hydrocarbons in central European soils with compound-specific triple isotopes (δ(13)C, Δ(14)C, and δ(2)H). Environmental Science & Technology 49(13):76577665.
Crank, J. 1975. The mathematics of diffusion. 2nd ed. Oxford: Clarendon Press. p. 16.
Fahrni, SM, Wacker, L, Synal, H-A, Szidat, S. 2013. Improving a gas ion source for 14C AMS. Nuclear Instruments and Methods in Physics Research B 294:320327.
Hoffmann, H, Friedrich, R, Kromer, B, Fahrni, SM. 2017. Status report. Implementation of gas measurements at the MAMS 14C AMS facility in Mannheim, Germany. Nuclear Instruments and Methods in Physics Research B 410:184187.
Hughey, BJ, Skipper, PL, Klinkowstein, RE, Shefer, RE, Wishnok, JS, Tannenbaum, SR. 2000. Low-energy biomedical GC–AMS system for 14C and 3H detection. Nuclear Instruments and Methods in Physics Research B 172(1–4):4046.
Kieser, WE, Leung, K, Krestina, N, Zhao, X-L, Litherland, AE, Cornett, J. 2010. Development and testing of an integrated combustion and gas ion source system for AMS. Nuclear Instruments and Methods in Physics Research B 268(7–8):784786.
R Core Team. 2013. R: a language and environment for statistical computing. Vienna, Austria. Available at: -http://www.R-project.org/.
Ruff, M, Wacker, L, Gäggeler, HW, Suter, M, Synal, H-A, Szidat, S. 2007. A gas ion source for radiocarbon measurements at 200 kV. Radiocarbon 49(2):307314.
Szidat, S, Salazar, G, Vogel, E, Battaglia, M, Wacker, L, Synal, H-A, Türler, A. 2014. 14C analysis and sample preparation at the new Bern Laboratory for the Analysis of Radiocarbon with AMS (LARA). Radiocarbon 56(2):561566.
Thomas, AT, Stewart, BJ, Ognibene, TJ, Turteltaub, KW, Bench, G. 2013. Directly coupled high-performance liquid chromatography-accelerator mass spectrometry measurement of chemically modified protein and peptides. Analytical Chemistry 85(7):36443650.
Tuna, T, Fagault, Y, Bonvalot, L, Capano, M, Bard, E. 2018. Development of small CO2 gas measurements with AixMICADAS. Nuclear Instruments and Methods in Physics Research B 437:9397.
Uhl, T, Kretschmer, W, Luppold, W, Scharf, A. 2004. Direct coupling of an elemental analyzer and a hybrid ion source for AMS measurements. Radiocarbon 46(1):6575.
Van Duijn, E, Sandman, H, Grossouw, D, Mocking, J, Coulier, L, Vaes, W. 2014. Automated combustion accelerator mass spectrometry for the analysis of biomedical samples in the low attomole range. Analytical chemistry 86(15):76357641.
Wacker, L, Fahrni, S M, Hajdas, I, Molnar, M, Synal, H-A, Szidat, S, Zhang, Y. 2013. A versatile gas interface for routine radiocarbon analysis with a gas ion source. Nuclear Instruments and Methods in Physics Research B 294:315319.
Welte, C, Wacker, L, Hattendorf, B, Christl, M, Koch, J, Synal, H-A, Günther, D. 2016. Novel laser ablation sampling device for the rapid radiocarbon analysis of carbonate samples by accelerator mass spectrometry. Radiocarbon 58(2):419435.
Welte, C, Wacker, L, Hattendorf, B, Christl, M, Koch, J, et al. 2017. Optimizing the analyte introduction for 14C laser ablation-AMS. Journal of Analytical Atomic Spectrometry 32:18131819.
Xu, S, Dougans, A, Freeman, PH, Maden, C, Loger, R. 2007. A gas ion source for radiocarbon measurement at SUERC. Nuclear Instruments and Methods in Physics Research B 259(1):7682.
Zhang, Y, Liu, J-W, Salazar, G, Li, J, Zotter, P, Zhang, G, et al. 2014. Micro-scale (μg) radiocarbon analysis of water-soluble organic carbon in aerosol samples. Atmospheric Environment 97:15.

Keywords

Type Description Title
WORD
Supplementary materials

Salazar and Szidat supplementary material
Salazar and Szidat supplementary material 1

 Word (21 KB)
21 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed