Skip to main content Accessibility help
×
Home

Is More Precise Dating of Paleoindian Expansion Feasible?

  • Stuart J Fiedel (a1) and Yaroslav V Kuzmin (a2)

Abstract

Recent efforts to precisely date the florescence of the Clovis culture in North America have been hampered by both practical and theoretical problems: 1) The era of Clovis expansion (about 11,200–10,700 BP or 13,200–12,700 cal BP) coincides with the gap between the anchored central European tree-ring sequence (back to 12,400 cal BP) and the floating Bølling-Allerød sequence; 2) Clovis seems to immediately precede the onset of the Younger Dryas (YD) stadial. The “black mats” of the US Southwest appear to mark the regional occurrence of this climatic downturn. However, the timing and means of long-distance propagation of this climatic event are not yet well understood. Greenland ice cores (GISP2, GRIP, and NGRIP) remain poorly synchronized, with a discrepancy of 100 to 250 yr for the date of onset (as late as 12,700 cal BP, or as early as 12,950 cal BP); 3) The YD onset was accompanied by a rapid drop of radiocarbon ages from 11,000 to 10,600 BP in less than a century. The mechanism causing this was probably a change in overturning circulation in the North Atlantic. Do variable Clovis ages, often from what appear to be single-occupation contexts, reflect this “cliff” effect, slightly earlier minor reversals during the late Allerød, or simply the practical limitations of precision of the 14C method? 4) Dates for Fishtail or Fell I sites (with fluted, stemmed points) in southern South America are statistically indistinguishable from Clovis dates in North America. Does this imply very rapid population expansion, diffusion of tool-making techniques through long-established local populations (as argued by Waters and Stafford 2007), or abnormally large interhemispheric 14C offsets? 5) Are recent ostensibly high-precision collagen-derived dates for Paleoindian-associated fauna (e.g. horse and mammoth) reliable? Are interlaboratory blind tests of the new filtration processes necessary?

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Is More Precise Dating of Paleoindian Expansion Feasible?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Is More Precise Dating of Paleoindian Expansion Feasible?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Is More Precise Dating of Paleoindian Expansion Feasible?
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: sfiedel@louisberger.com

References

Hide All
Bradley, B, Stanford, D. 2004. The North Atlantic ice-edge corridor: a possible Paleolithic route to the New World. World Archaeology 36(4):459–78.
Broecker, W. 2009. The mysterious 14C decline. Radiocarbon 51(1):109–19.
Burr, GS, Galang, C, Taylor, FW, Gallup, C, Edwards, RL, Cutler, K, Quirk, B. 2004. Radiocarbon results from a 13-kyr coral from the Huon Peninsula, Papua New Guinea. Radiocarbon 36(3):1211–24.
Dillehay, TD. 1997. Monte Verde, a Late Pleistocene Settlement in Chile. Volume 2. The Archaeological Context and Interpretation. Washington, DC: Smithsonian Institution Press. 1071 p.
Doerner, JP, Carrara, PE. 1999. Deglaciation and postglacial vegetation history of the West Mountains, west-central Idaho, U.S.A. Arctic, Antarctic, and Alpine Research 31(3):303–11.
Faught, MK. 2008. Archaeological roots of human diversity in the New World: a compilation of accurate and precise radiocarbon ages from earliest sites. American Antiquity 73(4):670–98.
Ferring, CR. 1995. The Late Quaternary geology and archaeology of the Aubrey Clovis site, Texas: a preliminary report. In: Johnson, E, editor. Ancient Peoples and Landscapes. Lubbock: Museum of Texas Technical University. p 273–81.
Ferring, CR. 2001. The Archaeology and Paleoecology of the Aubrey Clovis Site (41DN479), Denton County, Texas. Unpublished report from Center for Environmental Archaeology, University of North Texas, to US Army Corps of Engineers, Fort Worth District, Texas.
Fiedel, SJ. 1999. Artifact provenience at Monte Verde: confusion and contradictions. Scientific American Discovering Archaeology 1(6):112.
Fiedel, SJ. 2000. The peopling of the New World: present evidence, new theories, and future directions. Journal of Archaeological Research 8(1):39103.
Fiedel, SJ. 2002. Initial human colonization of the Americas: an overview of the issues and the evidence. Radiocarbon 44(2):407–36.
Fiedel, SJ. 2006a. Rapid Clovis colonization of the Americas: chronological evidence and archaeological analogues. In: Bonnichsen, R, Lepper, BT, Stanford, D, Waters, MW, editors. Paleoamerican Origins: Beyond Clovis. College Station: Texas A & M University Press. p 97102.
Fiedel, SJ. 2006b. Points in time: establishing a precise hemispheric chronology for Paleoindian migrations. In: Morrow, JE, Gnecco, C, editors. Paleoindian Archaeology, a Hemispheric Perspective. Gainsville: University Press of Florida. p 2143.
Fiedel, SJ. 2009. Sudden deaths: the chronology of terminal Pleistocene megafaunal extinction. In: Haynes, G, editor. American Megafaunal Extinctions at the End of the Pleistocene. New York: Springer-Verlag. p 2138.
Fiedel, SJ, Kuzmin, YV. 2007. Radiocarbon date frequency as an index of intensity of Paleolithic occupation of Siberia: Did humans react predictably to climate oscillations? Radiocarbon 49(2):741–56.
Firestone, RB, West, A, Kennett, JP, Becker, L, Bunch, TE, Revay, ZS, Schultz, PH, Belgya, T, Kennett, DJ, Erlandson, JM, Dickenson, OJ, Goodyear, AC, Harris, RS, Howard, GA, Kloosterman, JB, Lechler, P, Mayewski, PA, Montgomery, J, Poreda, R, Darrah, T, Que Hee, SS, Smith, AR, Stich, A, Topping, W, Wittke, JH, Wolbach, WS. 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences of the USA 104(41):16,01621.
Flegenheimer, N, Zarate, M. 1997. Considerations on radiocarbon and calibrated dates from Cerro La China and Cerro El Sombrero, Argentina. Current Research in the Pleistocene 14:27–8.
Foit, FF Jr, Mehringer, PJ Jr, Sheppard, JC. 1993. Age, distribution, and stratigraphy of Glacier Peak tephra in eastern Washington and western Montana, United States. Canadian Journal of Earth Sciences 30(3):535–52.
Gingerich, JAM. 2007. Shawnee-Minisink Revisited: Re-Evaluating the Paleoindian Occupation [unpublished MA thesis]. Laramie: University of Wyoming.
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Rozanski, K, Tisnerat, N, Walanus, A, Wicik, B, Wieckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377(6548):414–7.
Hajdas, I, Bonani, G, Boden, P, Peteet, DM, Mann, DH. 1998. Cold reversal on Kodiak Island, Alaska, correlated with the European Younger Dryas by using variations of atmospheric 14C content. Geology 26(11):1047–50.
Hajdas, I, Bonani, G, Moreno, PI, Ariztegui, D. 2003. Precise radiocarbon dating of Late-Glacial cooling in mid-latitude South America. Quaternary Research 59(1):70–8.
Haynes, CV Jr. 2007. Appendix B. Nature and origin of the black mat, stratum F2. In: Haynes, CV Jr, Huckell, B, editors. Murray Springs: A Clovis Site with Multiple Activity Areas in the San Pedro Valley, Arizona. Tucson: University of Arizona Press. p 240–9.
Haynes, CV Jr. 2008. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proceedings of the National Academy of Sciences of the USA 105(18):6520–5.
Haynes, CV Jr, Boerner, J, Domanik, K, Lauretta, D, Ballenger, J, Goreva, J. 2010. The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact. Proceedings of the National Academy of Sciences of the USA 107(9):4010–5.
Haynes, G. 2002. The Early Settlement of North America: The Clovis Era. Cambridge: Cambridge University Press. 345 p.
Haynes, G, Anderson, D, Ferring, R, Fiedel, S, Grayson, D, Haynes, V, Holliday, V, Huckell, B, Kornfeld, M, Meltzer, D, Morrow, J, Surovell, T, Waguespack, N, Wigand, P, Yohe, R II. 2007. Comment on “Redefining the age of Clovis: implications for the peopling of the Americas.” Science 317(5836):320b.
Hazelwood, L, Steele, J. 2003. Colonizing new landscapes: archaeological detectability of the first phase. In Rockman, M, Steele, J, editors. Colonization of Unfamiliar Landscapes: The Archaeology of Adaptation. London: Routledge. p 203–21.
Hedges, REM, Housley, RA, Bronk Ramsey, C, van Klinken, GJ. 1993. Radiocarbon dates from the Oxford AMS system: Archaeometry datelist 16. Archaeometry 35(1):147–67.
Higham, TFG, Jacobi, RM, Bronk Ramsey, C. 2006. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48(2):179–95.
Hoffecker, JF, Elias, CA. 2007. Human Ecology of Beringia. New York: Columbia University Press. 290 p.
Hua, Q, Barbett, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.
Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290(5498):1951–4.
Kelly, R, Todd, L. 1988. Coming into the country: early Paleoindian hunting and mobility. American Antiquity 53(2):231–44.
Kromer, B, Friedrich, M, Hughen, KA, Kaiser, F, Remmele, S, Schaub, M, Talamo, S. 2004. Late Glacial 14C ages from a floating, 1382-ring pine chronology. Radiocarbon 46(3):1203–9.
Kuehn, SC, Froese, DG, Carrara, PE, Foit, FF Jr, Pearce, NJ, Rotheisler, P. 2009. Major- and trace-element characterization, expanded distribution, and a new chronology for the latest Pleistocene Glacier Peak tephras in North America. Quaternary Research 71(2):201–16.
Kuzmin, YV, Orlova, LA. 1998. Radiocarbon chronology of the Siberian Paleolithic. Journal of World Prehistory 12(1):153.
Lea, DW, Pak, DK, Peterson, LC, Hughen, KA. 2003. Synchroneity of tropical and high-latitude Atlantic temperatures over the Last Glacial termination. Science 301(5638):1361–4.
Lowell, TV, Waterson, N, Fisher, T, Loope, H, Glover, K, Comer, G, Hajdas, I, Denton, G, Schaefer, J, Rinterknecht, V, Broecker, W, Teller, J. 2005. Testing the Lake Agassiz meltwater trigger for the Younger-Dryas. EOS Transactions, American Geophysical Union 86(40):365–73.
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCal04 Southern Hemisphere calibration, 0–11.0 cal kyr BP. Radiocarbon 46(3):1087–92.
Mehringer, PJ Jr, Foit, FF Jr. 1990. Volcanic ash dating of the Clovis cache at East Wenatchee, Washington. National Geographic Research 6(4):495503.
Morrow, JE, Fiedel, SJ. 2006. New radiocarbon dates for the Clovis component of the Anzick site (24PA506), Park County, Montana. In: Morrow, JE, Gnecco, C, editors. Paleoindian Archaeology, a Hemispheric Perspective. Gainsville: University Press of Florida. p 123–38.
Morrow, JE, Morrow, T. 1999. Geographic variation in fluted projectile points: a hemispheric perspective. American Antiquity 64(2):215–30.
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas Nature Geoscience 1(4):263–7.
Paquay, FS, Goderis, S, Ravizza, G, Vanhaeck, F, Boyd, M, Surovell, TA, Holliday, VT, Haynes, CV Jr, Claeys, P. 2009. Absence of geochemical evidence for an impact event at the Bølling-Allerød/Younger Dryas transition. Proceedings of the National Academy of Sciences of the USA 106(51):21,50510.
Renssen, H, van Geel, B, van der Plicht, J, Magny, M. 2000. Reduced solar activity as a trigger for the start of the Younger Dryas? Quaternary International 68–71:373–83.
Roosevelt, AC, Douglas, J, Brown, L. 2002. The migrations and adaptations of the first Americans: Clovis and pre-Clovis viewed from South America. In: Jablonski, NG, editor. The First Americans: The Pleistocene Colonization of the New World. San Francisco: California Academy of Sciences. p 159236.
Shukurov, A, Dolukhanov, PM, Sokoloff, DD. 2009. On the accuracy of radiocarbon dating for the Neolithic. Abstract #5. 20th International Radiocarbon Conference, 29 May–5 June 2009, Kona, Hawaii, USA.
Southon, JR. 2002. A first step to reconciling the GRIP and GISP2 ice-core chronologies, 0–14,500 yr B.P. Quaternary Research 57(1):32–7.
Southon, J, Edwards, L, Cheng, H, Smith, E, Hardt, B, Hughen, K. 2007. A new reconstruction for the onset of the Younger Dryas: evidence from speleothem, tree ring, and marine varve 14C archives and Greenland ice core proxies. Abstract #PP12A-03. American Geophysical Union Fall Meeting 2007.
Stafford, TW Jr, Hare, PE, Currie, L, Jull, AJT, Donahue, DJ. 1991. Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18(1):3572.
Stanford, D, Bradley, B. 2002. Ocean trails and prairie paths? Thoughts about Clovis origins. In: Jablonski, NG, editor. The First Americans: The Pleistocene Colonization of the New World. San Francisco: California Academy of Sciences. p 255–71.
Steele, J, Politis, G. 2008. AMS 14C dating of early human occupation of southern South America. Journal of Archaeological Science 36(2):419–29.
Steffensen, JP, Andersen, KK, Bigler, M, Clausen, HB, Dahl-Jensen, D, Fischer, H, Goto-Azuma, K, Hansson, M, Johnsen, SJ, Jouzel, J, Masson-Delmotte, V, Popp, T, Rasmussen, SO, Röthlisberger, R, Ruth, U, Stauffer, B, Siggaard-Andersen, M-L, Sveinbjörnsdóttir, ÁE, Svensson, A, White, JWC. 2008. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321(5889):680–4.
Surovell, TA, Holliday, VT, Gingerich, JAM, Ketron, C, Haynes, CV Jr, Hilman, I, Wagner, DP, Johnson, E, and Claeys, P. 2009. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences of the USA 106(43):18,1558.
Tamm, E, Kivisild, T, Reidla, M, Metspalu, M, Smith, DG, Mulligan, CJ, Bravi, CM, Rickards, O, Martinez-Labarga, C, Khusnutdinova, EK, Fedorova, SA, Golubenko, MV, Stepanov, VA, Gubina, MA, Zhadanov, SI, Ossipova, LP, Damba, L, Voevoda, MI, Dipierri, JE, Villems, R, Malhi, RS. 2007. Beringian standstill and spread of Native American founders. PLoS One 2(9):e829, doi:10.1371/journal.pone.0000829.
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, C-C, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345–8.
Waters, MR, Stafford, TW Jr. 2007. Redefining the age of Clovis: implications for the peopling of the Americas. Science 315(5815):1122–6.
Wohlfarth, B, Björck, S, Possnert, G, Holmquist, B. 1998. An 800-year long, radiocarbon-dated varve chronology from south-eastern Sweden. Boreas 27(4):243–57.
Zegura, SL, Karafet, TM, Zhivotovsky, LA, Hammer, MF. 2004. High-resolution SNPs and microsatellite haplotypes point to a single, recent entry of Native American Y chromosomes into the Americas. Molecular Biology and Evolution 21(1):164–75.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed