Skip to main content Accessibility help
×
Home

Ion-pair Ionization in CO2-fed Cesium Sputter Sources

  • John S Vogel (a1) and Alexander M Stolz (a2)

Abstract

A collision-radiation model of the solid sample cesium sputter ion source led to the rediscovery of anion production by ion-pair production. The model revealed physical processes that may produce high current outputs from such sources and suggested new ways of obtaining high outputs at lower heat and conductive stress to the source. Primary among these solutions is the electron excitation of primary Cs0 recycled from the sample to provide states that efficiently create chosen anions. Here we look at how the processes might apply to gas-fed ion sources.

Copyright

Corresponding author

*Corresponding author. Email: johnsvogel@yahoo.com.

Footnotes

Hide All

Selected Papers from the 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June, 2018

Footnotes

References

Hide All
Andersson, P, Martschini, M, Priller, A, Steier, P, Golser, R, Forstner, O. 2013. Spectroscopic analysis of the blue light emitted from Middleton type cesium sputter negative ion sources. Nuclear Instruments and Methods in Physics Research B 295:5560.
Avilkina, V, Andrianova, N, Borisov, A, Mashkova, E, Parikis, E. 2011. Energy and temperature dependence of ion-induced electron emission from polycrystaline graphite. Nuclear Instruments and Methods in Physics Research B 269:995998.
Baede, APM, Moutinho, AMC, De Vries, AE, Los, J. 1969. Total cross sections for charge transfer between alkali atoms and halogen molecules. Chemical Physics Letters 3(7):530531.
Barbier, L, Djerad, MT, Chéret, M. 1986, Collisional ion-pair formation in an excited alkali-metal vapor. Physical Review A 34(4):2710.10.1103/PhysRevA.34.2710
Bronk, CR, Hedges, REM. 1987. A gas ion source for radiocarbon dating. Nuclear Instruments and Methods in Physics Research B 29:45.10.1016/0168-583X(87)90201-1
Buslov, E, Zon, BA. 2012. Formation of negative ions in collisions between Rydberg atoms and neutral particles. Physical Review A:85(4).10.1103/PhysRevA.85.042709
Carrillo, I, Ramirez, JM, Magaña, LF. 2015. Adsorption of carbon monoxide, carbon dioxide and methane on hexagonal boron nitride with high titanium coverage. Surface Science. 637638:4852.
Cernusca, S, Fürsatz, M, Winter, HP, Aumayr, F. 2005. Ion-induced kinetic electron emission from HOPG with different surface orientation. Europhysics Letters 70:768.10.1209/epl/i2004-10521-x
Ciborowski, SM, Liu, G, Graham, JD, Buytendyk, AM, Bowers, KH. 2018. Dipole-bound anions: formed by Rydberg electron transfer (RET) and studied by velocity map imaging–anion photoelectron spectroscopy (VMI–aPES). Eur. Phys. Jour. D 72:139.
Desfrancois, C. 1995. Determination of electron binding energies of ground-state dipole-bound molecular anions. Physical Review A 51(5):36673675.
Dietz, LA, Sheffield, JC. 1975. Secondary electron emission induced by 5–30-keV monatomic ions striking thin oxide films. Journal of Applied Physics 46:4361.
Fahrni, SM, Wacker, L, Synal, H-A, Szidat, S. 2013. Improving a gas ion source for 14C AMS. Nuclear Instruments and Methods in Physics Research B 294:320327.10.1016/j.nimb.2012.03.037
Itikawa, Y. 2002. Cross sections for electron collisions with carbon dioxide. J. Phys. Chem. Ref. Data. 31: 749.
Klein, M, Mous, DJW. 2017. Technical improvements and performance of the HVE AMS sputter ion source SO-110. Nuclear Instruments and Methods in Physics Research B 406:210.
Klyucharev, A. 1993. Chemi-ionization processes. Physics Uspekhi 36:486.10.1070/PU1993v036n06ABEH002162
Krebs, KH. 1983. Recent advances in the field of ion-induced kinetic electron emission from solids. Vacuum 33:555.10.1016/0042-207X(83)90050-7
Kudriatsev, Y, Villegas, A, Godines, A, Asomoza, R. 2005. Calculation of the surface binding energy for ion sputtered particles. Appl. Surf. Sci. 239:273278.10.1016/j.apsusc.2004.06.014
Lachner, J, Kasberger, M, Martschini, M, Priller, A, Steier, P, Golser, R. 2015. Developments towards detection of 135Cs at VERA. Nuclear Instruments and Methods in Physics Research B 361(C):440444.10.1016/j.nimb.2015.01.032
Lee, YTT, Mahan, BH. 1965. Photosensitized ionization of alkali-metal vapors. The Journal of Chemical Physics 42(8):28932896.10.1063/1.1703258
Litherland, AE, Paul, M, Allenc, KW, Gove, HE. 1987. Fundamentals of accelerator mass spectrometry [and Discussion]. Phil. Trans. R. Soc. London A 323:521.
Middleton, R. 1984. A versatile high intensity negative ion source. Nuclear Instruments and Methods in Physics Research 220:105.10.1016/0167-5087(84)90416-2
Middleton, R, Klein, J. 1999. Production of metastable negative ions in a cesium sputter source: Verification of the existence of N2 and CO . Physical Review A 60(5):3786.
Mihajlov, AA, Srećković, VA, Ignjatović, LM, Klyucharev, AN. 2012, The chemi-ionization processes in slow collisions of Rydberg atoms with ground state atoms: mechanism and applications, Journal of Cluster Science 23(1):4775.10.1007/s10876-011-0438-7
Porezag, D, Frauenheim, T, Köhler, T, Seifert, G, Kaschner, R. 1995. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Physical Review B 51(19):12947.
Priti, D, Gangwar, RK, Srivastava, R. 2017. Calculation of fully relativistic cross sections for electron excitation of cesium atom and its application to the diagnostics of hydrogen-cesium plasma. Journal of Qualitative Spectroscopy and Radiation Transfer 187:426.
Reicherts, M, Roth, T, Gopalan, A, Ruf, MWW, Hotop, H, Desfrançois, C, Fabrikant, II. 1997. Controlled formation of weakly bound atomic negative ions by electron transfer from state-selected Rydberg atoms. EPL (Europhysics Letters) 40(2):129.
Ruano, G, Vidal, RA, Ferron, J, Baraguiola, RA. 2011. High energy excitations in ion-induced electron enission from AlF3 . Surface Science 605:18071811.
Ruff, M, Wacker, L, Gäggler, HW, Suter, M. 2007. A gas ion source for radiocarbon measurements. Radiocarbon 49:307.10.1017/S0033822200042235
Sigmund, P. 1969, Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets. Physical Review 184:383.
Stein, JD and White, FA. 1972. New method for the measurement of electron yield from ion bombardment. Jour. Applied Physics 43:2617.
Stolz, A 2020. Einrichtung und Weiterentwicklung eines 14CO2-Systems am 6 MV TANDETRON Beschleuniger des CologneAMS [Ph.D. thesis]. Cologne: University of Cologne. 112 p
Stolz, A, Dewald, A, Altenkirch, R, Herb, S, Heinze, S, Schiffer, M, Feuerstein, C, Muller-Gatermann, C, Wotte, A, Rethemeyer, J, Dunai, T. 2017. Radiocarbon measurements of small gaseous samples at Cologne AMS. Nucl. Instr. and Meth. B 406: 283286.
Stolz, A, Dewald, A, Heinze, S, Altenkirch, R, Hackenberg, G, Herb, S, Muller-Gatermann, C, Schiffer, M, Zitzer, G, Wotte, A, Rethemeyer, J, Dunai, T. 2018. Improvements in the measurement of small 14CO2 samples at Cologne AMS. Nuclear Instruments and Methods in Physics Research B. In press.
Stout, VL, Gibbons, MD. 1955. Gettering of gas by tiyanium. Journal of Applied Physics 26:1488.
Szmytkowski, C. and Maciqg, K. 1996. Absolute electron-scattering totaI cross section measurements for noble gas atoms and diatomic molecules. Physica Scripta 54: 271280.
Thomas, LD, Nesbet, RK. 1975. Low energy electron scattering by atomic carbon. Phys. Rev. A 12:23782382.
Uhl, T, Kretschmer, W, Luppold, W, Scharf, A. 2004. Direct coupling of an elemental analyzer and a hybrid ion source for AMS measurements. Radiocarbon 46:65.
Uhl, T, Luppold, W, Rottenbach, A, Scharf, A, Kretschmer, W. 2007. Development of an automatic gas handling system for microscale AMS 14C measurements. Nuclear Instruments and Methods in Physics Research B 259:303.10.1016/j.nimb.2007.01.173
Vandervorst, W, Janssens, T, Huyghebaert, C, Berghmans, B. 2008. The fate of the (reactive) primary ion: Sputtering and desorption. Applied Surface Science 255:12061214.10.1016/j.apsusc.2008.05.089
Vogel, JS. 2013. Neutral resonant ionization in the high-intensity cesium sputter source. In: Third International Symposium on Negative Ions, Beams and Sources. AIP Conference Series 1515:8998.
Vogel, JS, Giacomo, JA, Dueker, SR. 2013. Quantifying absolute carbon isotope ratios by AMS. Nuclear Instruments and Methods in Physics Research B 294:340348.
Vogel, JS. 2015. Anion formation by neutral resonant ionization. Nuclear Instruments and Methods in Physics Research B 361:156–62.
Vogel, JS. 2016. Anion formation in sputter ion sources by neutral resonant ionization. Review of Scientific Instruments 87:02A504.
Vogel, JS, Giacomo, JA. 2016. Increased 14C AMS efficiency from reduced competitive ionization. Radiocarbon. doi: 10.1017/RDC.2016.38.
Vogel, JS. 2018. LASIS: the laser assisted sputter ion source. Nuclear Instruments and Methods in Physics Research B. doi: 10.1016/j.nimb.2018.07.015
Submitted Vogel-Stolz Manuscript Wünderlich, D, Wimmer, C, Friedl, R. 2014. A collisional radiative model for low-pressure hydrogen–caesium plasmas and its application to an RF source for negative hydrogen ions. Journal of Qualitative Spectroscopy and Radiation Transfer 149:360.
Xu, S, Dougans, A, Freeman, SPHT, Maden, C, Loger, R. 2007. A gas ion source for radiocarbon measurement at SUERC. Nuclear Instruments and Methods in Physics Research B 259:76.
Yamamura, Y, Tawara, H. 1996. Energy dependence of ion-induced sputtering yields from monatomic solids at normal incidence. Atomic Data and Nuclear Data Tables 62:2
Zecca, A, Karwasz, P, Brusa, RS. 1996. One century of experiments on electron-atom and molecule scattering: a critical review of integer cross-sections. Rivista del Nuovo Cimento 19(3):1.

Keywords

Ion-pair Ionization in CO2-fed Cesium Sputter Sources

  • John S Vogel (a1) and Alexander M Stolz (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed