Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T08:59:51.030Z Has data issue: false hasContentIssue false

Hydropyrolysis: Implications for Radiocarbon Pretreatment and Characterization of Black Carbon

Published online by Cambridge University Press:  18 July 2016

P L Ascough
Affiliation:
SUERC, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride G75 0QF, United Kingdom
M I Bird
Affiliation:
School of Earth and Environmental Sciences, James Cook University, Cairns, Queensland 4870, Australia
W Meredith
Affiliation:
Dept. of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD, United Kingdom
R E Wood
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford OX1 3QY, United Kingdom
C E Snape
Affiliation:
Dept. of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD, United Kingdom
F Brock
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford OX1 3QY, United Kingdom
T F G Higham
Affiliation:
Oxford Radiocarbon Accelerator Unit, University of Oxford, Oxford OX1 3QY, United Kingdom
D J Large
Affiliation:
Dept. of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD, United Kingdom
D C Apperley
Affiliation:
EPSRC Solid-State NMR Service, Dept. of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Charcoal is the result of natural and anthropogenic burning events, when biomass is exposed to elevated temperatures under conditions of restricted oxygen. This process produces a range of materials, collectively known as pyrogenic carbon, the most inert fraction of which is known as black carbon (BC). BC degrades extremely slowly and is resistant to diagenetic alteration involving the addition of exogenous carbon, making it a useful target substance for radiocarbon dating particularly of more ancient samples, where contamination issues are critical. We present results of tests using a new method for the quantification and isolation of BC, known as hydropyrolysis (hypy). Results show controlled reductive removal of non-BC organic components in charcoal samples, including lignocellulosic and humic material. The process is reproducible and rapid, making hypy a promising new approach not only for isolation of purified BC for 14C measurement but also in quantification of different labile and resistant sample C fractions.

Type
Sample Preparation
Copyright
Copyright © 2010 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Alloway, BV, Pribadi, A, Westgate, JA, Bird, M, Fifield, LK, Hogg, A, Smith, I. 2004. Correspondence between glass-FT and AMS 14C ages of silicic pyroclastic density current (PDC) deposits sourced from Maninjau caldera, west-central Sumatra. Earth and Planetary Science Letters 227(1–2):121–33.CrossRefGoogle Scholar
Antal, MJ, Grønli, MG. 2003. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research 42(8):1619–46.Google Scholar
Ascough, P, Bird, MI, Wormald, P, Snape, CE, Apperley, D. 2008a. Influence of pyrolysis variables and starting material on charcoal stable isotopic and molecular characteristics. Geochimica et Cosmochimica Acta 72(24):6090–102.CrossRefGoogle Scholar
Ascough, PL, Bird, MI, Brock, F, Higham, TFG, Meredith, W, Snape, C, Vane, CH. 2008b. Hydropyrolysis as a new tool for radiocarbon pretreatment and the quantification of black carbon. Quaternary Geochronology 4(2):140–7.Google Scholar
Atalla, RH, VanderHart, DL. 1999. The role of solid state 13C NMR spectroscopy in studies of the structure of native celluloses. Solid State Nuclear Magnetic Resonance 15(1):119.CrossRefGoogle ScholarPubMed
Baena, J, Carrión, E, Manzano, I, Velázquez, R, Sanz, E, Sánchez, S, Ruiz, B, Uzquiano, P, Yravedra, J. 2005. Ocupaciones musterienses en la comarca de Liébana (occidente de Cantabria): la cueva de El Esquilleu. In: Santonja, M, Pérez-Gonzalez, A, Machado, M, editors. Geoarqueología y patrimonio en la Península Ibérica y el entornoMediterráneo. Adema: Almazán. p 113–25.Google Scholar
Bartolomei, G, Broglio, A, Cassoli, P, Castelletti, L, Cremaschi, M, Giacobini, G, Malerba, G, Maspero, A, Peresani, M, Sartorelli, A, Tagliacozzo, A. 1992. La Grotte-Abri de Fumane. Un site Aurignacien au Sud des Alps. Preistoria Alpina 28:131–79.Google Scholar
Bird, MI. 2006. Radiocarbon dating of charcoal. In: Elias, SA, editor. The Encyclopaedia of Quaternary Science. Amsterdam: Elsevier. p 2950–7.Google Scholar
Bird, MI, Gröcke, DR. 1997. Determination of the abundance and carbon isotope composition of elemental carbon in sediments. Geochimica et Cosmochimica Acta 61(16):3413–23.Google Scholar
Bird, MI, Moyo, E, Veenendaal, E, Lloyd, JJ, Frost, P. 1999a. Stability of elemental carbon in a savanna soil. Global Biogeochemical Cycles 13(4):923–32.CrossRefGoogle Scholar
Bird, MI, Ayliffe, LK, Field, LK, Turney, CSM, Cresswell, RG, Barrows, TT, David, B. 1999b. Radiocarbon dating of ‘old’ charcoal using a wet oxidation-stepped combustion procedure. Radiocarbon 41(2):127–40.CrossRefGoogle Scholar
Bird, MI, Turney, CSM, Fifield, LK, Jones, R, Ayliffe, LK, Palmer, A, Cresswell, RG, Robertson, S. 2002. Radiocarbon analysis of the early archaeological site of Nauwalabila 1, Arnhem Land, Australia: implications for sample suitability and stratigraphic integrity. Quaternary Science Reviews 21(8–9):1061–75.CrossRefGoogle Scholar
Bird, MI, Fifield, LK, Santos, GM, Beaumont, PB, Zhou, Y, di Tada, ML, Hausladen, PA. 2003. Radiocarbon dating from 40 to 60 ka BP at Border Cave, South Africa. Quaternary Science Reviews 22(8–9):943–7.Google Scholar
Brock, F, Higham, TFG. 2008. AMS radiocarbon dating of Paleolithic-aged charcoal from Europe and the Mediterranean Rim using ABOx-SC. Radiocarbon 51(2):839–46.Google Scholar
Brock, F, Higham, TFG, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.CrossRefGoogle Scholar
Broglio, A, De Stefani, M, Tagliacozzo, A, Gurioli, F, Facciolo, A. 2006. Aurignacian dwelling structures, hunting strategies and seasonality in the Fumane Cave (Lessini Mountains). In: Vasil'ev, SA, Popov, VV, Anikovich, MV, Praslov, ND, Sinitsyn, AA, Hoffecker, JF, editors. Kostenki & the Early Upper Paleolithic of Eurasia: General Trends, Local Developments. Saint Petersburg: Nestor-Historia Publications. p 263–8.Google Scholar
Chappell, J, Head, MJ, Magee, J. 1996. Beyond the radiocarbon limit in Australian archaeology and Quaternary research. Antiquity 70(269):543–52.Google Scholar
Cohen-Ofri, I, Weiner, L, Boaretto, E, Mintz, G, Weiner, S. 2006. Modern and fossil charcoal: aspects of structure and diagenesis. Journal of Archaeological Science 33(3):428–39.Google Scholar
Delibrias, G, Guidon, N, Parenti, F. 1988. The Toca do Boqueirão do Sítio da Pedra Furada: stratigraphy and chronology. In: Early Man in the Southern Hemisphere. Supplement to Archaeometry: Australasian Studies. University of Adelaide, Department of Physics and Mathematics. p S3S11.Google Scholar
DeLuca, TH, MacKenzie, MD, Gundale, MJ, Holben, WE. 2006. Wildfire-produced charcoal directly influences nitrogen cycling in forest ecosystems. Soil Science Society of America Journal 70:448–53.Google Scholar
Earl, WL, VanderHart, DL. 1981. Observations by high-resolution carbon-13 nuclear magnetic resonance of cellulose I related to morphology and crystal structure. Macromolecules 14:570–4.Google Scholar
Eckmeier, E, Gerlach, R, Skjemstad, JO, Ehrmann, O, Schmidt, MWI. 2007. Only small changes in soil organic carbon and charcoal found one year after experimental slash-and-burn in a temperate deciduous forest. Biogeosciences Discussions 4:595614.Google Scholar
Fontaine, S, Barot, S, Barré, P, Bdiouil, N, Mary, B, Rumpel, C. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–80.Google Scholar
Gillespie, R, Hammond, AP, Goh, KM, Tonkin, PJ, Lowe, DC, Sparks, RJ, Wallace, G. 1992. AMS radiocarbon dating of a Late Quaternary tephra site at Graham's Terrace, New Zealand. Radiocarbon 34(1):21–8.Google Scholar
Goh, KM. 1979. Contaminants in charcoals used for radiocarbon dating. New Zealand Journal of Science 22:3947.Google Scholar
Guidon, N, Delibrias, G. 1985. Inventaire des sites Sud-Americains Anterieurs a 12000 ans. L'Anthropologie 89(3):385408.Google Scholar
Guidon, N, Delibrias, G. 1986. Carbon-14 dates point to man in the Americans 32,000 years ago. Nature 321(6072):769–71.Google Scholar
Hallier, M, Petit, LP. 2000. Tertres d'occupation et d'autre formes d'habitation à l'âge de Fer: rapport préliminaire de la campagne archéologique en été 2000 au nord du Burkina Faso. Nyame Akuma 54:25.Google Scholar
Hallier, M, Petit, LP. 2001 Fouille d'une maison de l'Age du Fer dans le nord du Burkina Faso. Nyame Akuma 56:23.Google Scholar
Hammes, K, Schmidt, MWI, Smernik, RJ, Currie, LA, Ball, WP, Nguyen, TH, Louchouarn, P, Houel, S, Gustafsson, Ö, Elmquist, M, Cornelissen, G, Skjemstad, JO, Masiello, CA, Song, J, Peng, P, Mitra, S, Dunn, JC, Hatcher, PG, Hockaday, WC, Smith, DM, Hartkopf-Fröder, CM, Böhmer, AM, Lüer, B, Huebert, BJ, Amelung, GW, Brodowski, S, Huang, L, Zhang, W, Gschwend, PM, Flores-Cervantes, X, Largeau, C, Rouzaud, J-N, Rumpel, C, Guggenberger, G, Kaiser, K, Rodionov, A, Gonzalez-Vila, FJ, Gonzalez-Pere, JA, De La Rosa, JM, Manning, DAC, López-Capél, E, Ding, L. 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochemical Cycles 21: GB3016, doi:10.1029/2006GB002914.Google Scholar
Harkness, DD, Roobol, MJ, Smith, AL, Stipp, JJ, Baker, PE. 1994. Radiocarbon redating of contaminated samples from a tropical volcano: the Mansion “Series” of St. Kitts, West Indies. Bulletin of Volcanology 56:326–34.Google Scholar
Hatcher, PG, Lerch, I, Harry, E, Bates, AL, Verheyen, TV. 1989. Solid-state 13C nuclear magnetic resonance studies of coalified gymnosperm xylem tissue from Australian brown coals. Organic Geochemistry 14(2):145–55.Google Scholar
Haumaier, L, Zech, W. 1995. Black carbon—possible source of highly aromatic components of soil humic acids. Organic Geochemistry 23(3):191–6.CrossRefGoogle Scholar
Hedges, REM, Law, IA, Bronk, CR, Housley, RA. 1989. The Oxford Accelerator Mass Spectrometry Facility: technical developments in routine dating. Archaeometry 31(2):99113.Google Scholar
Higham, TFG, McGovern-Wilson, RJ, Hogg, AG. 1998. Chemical pretreatment and radiocarbon dating of samples from the prehistoric site of Killermont #2, Mackenzie Basin, New Zealand. New Zealand Journal of Archaeology 18:7590.Google Scholar
Higham, TFG, Barton, H, Turney, CSM, Barker, G, Bronk Ramsey, C, Brock, F. 2009a. Radiocarbon dating of charcoal from tropical sequences: results from the Niah Great Cave, Sarawak, and their broader implications. Journal of Quaternary Science 24(2):189–97.Google Scholar
Higham, T, Brock, F, Peresani, M, Broglio, A, Wood, R, Douka, K. 2009b. Problems with radiocarbon dating the Middle to Upper Palaeolithic transition in Italy. Quaternary Science Reviews 28(13–14):1257–67.Google Scholar
Jin, Z, Katsumata, KS, Lam, TBT, Iiyama, K. 2006. Covalent linkages between cellulose and lignin in cell walls of coniferous and nonconiferous woods. Biopolymers 83(2):103–10.Google Scholar
Kaal, J, Brodowski, S, Baldock, JA, Nierop, KGJ, Cortizas, AM. 2008. Characterisation of aged black carbon using pyrolysis-GC/MS, thermally assisted hydrolysis and methylation (THM), direct and cross-polarisation 13C nuclear magnetic resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic Geochemistry 39(10):1415–26.Google Scholar
Knicker, H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85(1):91118.CrossRefGoogle Scholar
Knicker, H, Almendros, G, González-Vila, FJ, González-Pérez, JA, Polvillo, O. 2006. Characteristic alterations of quantity and quality of soil organic matter caused by forest fires in continental Mediterranean ecosystems: a solid-state 13C NMR study. European Journal of Soil Science 57:558–69.Google Scholar
Knicker, H, Müller, P, Hilscher, A. 2007. How useful is chemical oxidation with dichromate for the determination of “Black Carbon” in fire-affected soils? Geoderma 142:178–96.Google Scholar
Kramer, RW, Kujawinski, EB, Hatcher, PG. 2004. Identification of black carbon derived structures in a volcanic ash soil humic acid by fourier transform ion cyclotron resonance mass spectrometry. Environmental Science and Technology 38:3387–95.CrossRefGoogle Scholar
Kringstad, KP, Mörck, R. 1983. 13C-NMR spectra of kraft lignins. Holzforschung 37:237–44.Google Scholar
Laird, DA, Chappell, MA, Martens, DA, Wershaw, RL, Thompson, M. 2008. Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143:115–22.Google Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):1261–72.CrossRefGoogle Scholar
Levine, JS, Cofer, WR III, Cahoon, DR Jr, Winsted, EL, Stocks, BJ. 1992. Biomass burning and global change. AIP Conference Proceedings 277:131–9.CrossRefGoogle Scholar
Maitland, J. 2005. Organic Chemistry. New York: W.W. Norton.Google Scholar
McMurry, J. 1996. Organic Chemistry. 4th edition. Pacific Grove: Brooks/Cole Publishing.Google Scholar
Meredith, W, Russell, CA, Cooper, M, Snape, CE, Love, GD, Fabbri, D, Vane, CH. 2004. Trapping hydropyrolysates on silica and their subsequent thermal desorption to facilitate rapid fingerprinting by GC-MS. Organic Geochemistry 35(1):7389.Google Scholar
Parenti, F. 2001. Le gisement quaternaire de la Toca do Boqueirão da Pedra Furada (Piaui, Brésil): stratigraphie, chronologie, évolution culturelle. Paris: Editions Recherches sur Les Civilisations.Google Scholar
Peresani, M, Cremaschi, M, Ferraro, F, Falguéres, C, Bahain, J-J, Gruppioni, G, Sibilia, E, Quarta, G, Calcagnile, L, Dolo, J-M. 2008. Age of the final Middle Palaeolithic and Uluzzian levels at Fumane Cave, Northern Italy, using 14C, ESR, 234U/230Th and thermoluminescence methods. Journal of Archaeological Science 35(11):2986–96.Google Scholar
Preston, CM, Schmidt, MWI. 2006. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions. Biogeoscience 3:397420.Google Scholar
Rebollo, NR, Cohen-Ofri, I, Popovitz-Biro, R, Bar-Yosef, O, Meignen, L, Goldberg, P, Weiner, S, Boaretto, E. 2008. Structural characterization of charcoal exposed to high and low pH: implications for 14C sample preparation and charcoal preservation. Radiocarbon 50(2):289307.Google Scholar
Santos, GM, Bird, MI, Parenti, F, Fifield, LK, Guidon, N, Hausladen, PA. 2003. A revised chronology of the lowest occupation layer of Pedra Furada Rock Shelter, Piaui, Brazil: the Pleistocene peopling of the Americas. Quaternary Science Reviews 22(21–22):2303–10.Google Scholar
Schmidt, MWI, Skjemstad, JO, Czimczik, CI, Glaser, B, Prentice, KM, Gelinas, Y, Kuhlbusch, TAJ. 2001. Comparative analysis of black carbon in soils. Global Biogeochemical Cycles 15(1):163–7.Google Scholar
Simpson, MJ, Hatcher, PG. 2004. Overestimates of black carbon in soils and sediments. Naturwissenschaften 91:436–40.Google Scholar
Skjemstad, JO, Reicosky, DC, Wilts, AR, McGowan, JA. 2002. Charcoal carbon in U.S. agricultural soils. Soil Science Society of America Journal 66:1249–55.Google Scholar
Thorn, KA, Folan, DW, MacCarthy, P. 1989. Characterization of the International Humic Substances Society Standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry. Denver: US Geological Survey, Water-Resources Investigations Report 89–4196.Google Scholar
Turney, CSM, Bird, MI, Fifield, LK, Roberts, RG, Smith, MA, Dortch, CE, Grün, R, Lawson, E, Ayliffe, LK, Miller, GH, Dortch, J, Cresswell, RG. 2001. Early human occupation at Devil's Lair, southwestern Australia 50,000 years ago. Quaternary Research 55(1):313.Google Scholar
Venkataraman, C, Friedlander, SK. 1994. Size distributions of polycyclic aromatic hydrocarbons and elemental carbon. 2. Ambient measurements and effects of atmospheric processes. Environmental Science and Technology 28(4):563–72.Google Scholar
Wolbach, WS, Anders, E. 1989. Elemental carbon in sediments: determination and spectroscopic analysis in the presence of kerogen. Geochimica et Cosmochimica Acta 53(7):1637–47.CrossRefGoogle Scholar
Zilhão, J. 2006. Chronostratigraphy of the Middle-to-Upper Paleolithic transition in the Iberian Peninsula. Pyrenae 37(1):784.Google Scholar