Skip to main content Accessibility help
×
Home

Fishing for Dog Food: Ethnographic and Ethnohistoric Insights on the Freshwater Reservoir in Northeastern North America

  • William A Lovis (a1) and John P Hart (a2)

Abstract

A review of current research reveals multiple lines of evidence suggesting that no single freshwater reservoir offset (FRO) correction can be applied to accelerator mass spectrometer (AMS) ages obtained on carbonized food residue from cooking vessels. Systematically evaluating the regional presence, magnitude, and effects of a freshwater reservoir effect (FRE) is a demonstrably difficult analytic problem given the variation of ancient carbon reservoirs in both space and time within water bodies, and which should be performed in advance of AMS assays. In coastal and estuarine contexts, a priori partitioning FRE from known marine reservoir effects (MRE) is also necessary to eliminate potential mixed effects. Likewise, any FRE varies based on the proportional mix of resources producing the residues and the ancient carbon uptake of those products. Processing techniques are a significant component of assessing potential FRE, and each pot/cooking vessel is therefore an independent context requiring analytic evaluation. In northeastern North America, there is little ethnohistoric/ethnographic evidence for fish boiling/stewing in ceramic cooking vessels; rather, fish were more often dried, smoked, or cooked for immediate consumption on open fires. Assays of fatty acids extracted from prehistoric vessel fabrics even on known fishing sites reveals no evidence for fish in the food mix. These observations suggest that the likelihoods of FRE in carbonized food residue in northeastern North America is therefore low, and that assays potentially suffering from FRO are minimal. In turn, this suggests that AMS ages from carbonized food residues are reliable unless analytically demonstrated otherwise for specific cases, and should take primacy over ages on other associated materials that have historically been employed for critical threshold chronological events.

Copyright

Corresponding author

Corresponding author. Email: william.lovis@ssc.msu.edu.

References

Hide All
Ascough, PL, Cook, GT, Hastie, H, Dunbar, E, Church, MJ, Einarsson, Á, McGovern, TH, Dugmore, AJ. 2011. An Icelandic freshwater radiocarbon reservoir effect: implications for lacustrine 14C chronologies. The Holocene 21(7):1073–80.
Briggs, JC, Ficke, JF. 1977. Quality of Rivers of the United States, 1975 Water Year—Based on the National Stream Quality Accounting Network (NASQUAN). Open-File Report 78-200. Reston: Geological Survey, U.S. Department of the Interior.
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103–12.
Butman, DE, Wilson, HF, Barnes, RT, Xenopoulos, MA, Raymond, PA. 2015. Increased mobilization of aged carbon to rivers by human disturbance. Nature Geoscience 8:112–6.
Cabot, WB. 1912. In Northern Labrador. London: John Murray.
Densmore, F. 1929. Chippewa Customs. Bulletin 86. Washington, DC: Bureau of American Ethnology, Smithsonian Institution.
Fernandes, R, Dreves, A, Nadeau, M-J, Grootes, PM. 2013. A freshwater lake saga: carbon routing within the aquatic food web of Lake Schwerin. Radiocarbon 55(2–3):1102–13.
Fisheries and Environment Canada. 1978. Hydrological Atlas of Canada. Government of Canada, Natural Resources Canada, Earth Sciences Sector, Quebec. http://geogratis/geogratis/en/option/select.do?id=29A33AD7-6CD3-DD8B-ECE4-6BD7C-07C562A. Last accessed 11 August 2014.
Geyh, MA, Schotterer, U, Grosjean, M. 1998. Temporal changes of the 14C reservoir effect in lakes. Radiocarbon 40(2):921–31.
Harrington, MR. 1908. Some Seneca corn-foods and their preparation. American Anthropologist New Series 10:575–90.
Hart, JP. 2014. A model for calculating freshwater reservoir offsets on AMS-dated charred, encrusted cooking residues formed from varying resources. Radiocarbon 56(3):981–9.
Hart, JP, Lovis, WA. 2007a. The freshwater reservoir and radiocarbon dates on cooking residues: old apparent ages or a single outlier? Comments on Fischer and Heinemeier (2003). Radiocarbon 49(3):1403–10.
Hart, JP, Lovis, WA. 2007b. A multi-regional analysis of AMS and radiometric dates from carbonized food residues. Midcontinental Journal of Archaeology 32(2):201–60.
Hart, JP, Lovis, WA. 2014. A re-evaluation of the reliability of AMS dates on pottery food residues from the late prehistoric Central Plains of North America: comment on Roper (2013). Radiocarbon 56(1):341–53.
Hart, JP, Lovis, WA, Schulenberg, JK, Urquhart, GR. 2007. Paleodietary implications from stable isotope analysis of experimental cooking residues. Journal of Archaeological Science 34(5):804–13.
Hart, JP, Urquhart, GR, Feranec, RS, Lovis, WA. 2009. Nonlinear relationship between bulk 13C and percent maize in carbonized cooking residues and the potential of false negatives in detecting maize. Journal of Archaeological Science 36(10):2206–12.
Hart, JP, Lovis, WA, Jeske, RJ, Richards, JD. 2012. The potential of bulk δ13C on encrusted cooking residues as independent evidence for regional maize histories. American Antiquity 77(2):315–25.
Hart, JP, Lovis, WA, Urquhart, GR, Reber, EA. 2013. Modeling freshwater reservoir offsets on radiocarbon dated charred cooking residues. American Antiquity 78(3):536–52.
Hilger, I. 1951. Chippewa Child Life and Its Cultural Background. St. Paul: Minnesota Historical Society.
Hohman-Caine, CA, Syms, EL. 2012. The Age of Brainerd Ceramics. Minnesota Historical Society Contract No. 4107232. Hackensack, MN: Soils Consulting.
Keaveney, EM. 2010. Investigations into freshwater radiocarbon reservoir offsets from Britain and Ireland [PhD dissertation]. Queen's University Belfast.
Keaveney, EM, Reimer, PJ. 2012. Understanding the variability in freshwater radiocarbon reservoir offsets: a cautionary tale. Journal of Archaeological Science 39(5):1306–16.
Kinietz, WV. 1940. The Indians of the Western Great Lakes 1615–1760. Ann Arbor: University of Michigan Press.
Kooiman, SM. 2012. Old pots, new approaches: a functional analysis of Woodland pottery from Lake Superior's south shore . Normal: Illinois State University.
Kubiak-Martens, L, Brinkkemper, O, Oudemans, TFM. 2015. What's for dinner? Processed food in the coastal area of the northern Netherlands in the Late Neolithic. Vegetation History and Archaeobotany 24(1):4762.
Lajewski, CK, Mullins, HT, Patterson, WP, Callinan, CW. 2003. Historic calcite record from the Finger Lakes, New York: impact of acid rain on a buffered terrane. Geological Society of America Bulletin 115:373–84.
Leacock, EB. 1954. The Montagnais “hunting territory” and the fur trade. Memoir 78. American Anthropologist 56(5), Part 2. p 159.
Leacock, EB, Rothschild, NA, editors. 1994. Labrador Winter: The Ethnographic Journals of William Duncan Strong, 1927–1928. Washington, DC: Smithsonian Institution Press.
Lovis, WA, Urquhart, GR, Raviele, ME, Hart, JP. 2011. Hardwood ash nixtamalization may lead to false negatives for the presence of maize by depleting bulk δ13C in carbonized residues. Journal of Archaeological Science 38(10):2726–30.
Malainey, ME, Figol, T. 2012a. Appendix A: lipid residue analysis report – Sand Point Site. In: Kooiman, SM. Old pots, new approaches: a functional analysis of Woodland pottery from Lake Superior's south shore . Normal: Illinois State University. p 211–34.
Malainey, ME, Figol, T. 2012b. Appendix A: lipid residue analysis report – Naomikong Point Site. In: Kooiman SM. Old pots, new approaches: a functional analysis of Woodland pottery from Lake Superior's south shore . Normal: Illinois State University. p 235–59.
Martelle Hayter, H. 1994. Hunter gatherers and the ethnographic analogy: theoretical perspectives. Totem: The University of Western Ontario Journal of Anthropology 1(1):3949.
Mullins, HT, Patterson, WP, Teece, MA, Burnett, AW. 2011. Holocene climate and environmental change in Central New York (USA). Journal of Paleolimnology 45(2):243–56.
Needham, AE. 1965. The Uniqueness of Biological Materials. New York: Oxford University Press.
O'Brien, DM, Schrag, DP, del Rio, CM. 2000. Allocation to reproduction in a hawkmoth: a quantitative analysis using stable carbon isotopes. Ecology 81(10):2822–31.
Olsen, J, Rasmussen, P, Heinemeier, J. 2009. Holocene temporal and spatial variation in the radiocarbon reservoir age of three Danish fjords. Boreas 38(3):458–70.
Parker, AC. 1910. Iroquois Use of Maize and Other Food Plants. New York State Museum Bulletin 44. Albany: University of the State of New York.
Peregrine, PN. 1996. Ethnology versus ethnographic analogy: a common confusion in archaeological interpretation. Cross-Cultural Research 30(4):316–29.
Philippsen, B. 2008. Hard water or high ages? 14C food crust analysis on Mesolithic pottery from northern Germany . Faculty of Physics and Astronomy, University of Heidelberg, Germany.
Philippsen, B. 2013. The freshwater reservoir effect in radiocarbon dating. Heritage Science 1:24, doi:10.1186/2050-7445-1-24.
Philippsen, B, Heinemeier, J. 2013. Freshwater reservoir effect variability in northern Germany. Radiocarbon 55(2–3):1085–101.
Philippsen, B, Kjeldsen, H, Hartz, S, Paulsen, H, Clausen, I, Heinemeieier, J. 2010. The hardwater effect in AMS 14C dating of food crusts on pottery. Nuclear Instruments and Methods Physics Research B 268(7–8):995–8.
Reber, EA, Hart, JP. 2008. Pine resins and pottery sealing: analysis of absorbed and visible pottery residues from central New York State. Archaeometry 50(6):9991017.
Rogers, ES. 1962. The Round Lake Ojibwa. Occasional Paper 5. Toronto: Royal Ontario Museum.
Rogers, ES. 1973. The Quest for Food and Furs: The Mistassini Cree, 1953–1954. Publications in Ethnology 5. Ottawa: National Museums of Canada.
Sagard, TG. 1865. Le Grand Voyage du Pays des Hurons, Situé en l'Amérique vers la Mer douce, ès derniers confins de la Nouvelle France dite Canada avec un Dictionnaire de la langue Huronne par F. Gabriel Sagard Theodot, Recollet de S. François, de la province de S. Denys en France. Nouvelle édition. Paris: M. Émile Chevalier.
Speck, FG. 1935. Naskapi, The Savage Hunters of the Labrador Peninsula. Norman: University of Oklahoma Press.
Steinbring, J. 1981. Saulteaux of Lake Winnipeg. In: Helm, J, editor. Handbook of North American Indians, Volume 6, Subarctic. Washington, DC: Smithsonian Institution Press. p 244–55.
Taché, K, Craig, OE. 2015. Cooperative harvesting of aquatic resources triggered the beginning of pottery production in north-eastern North America. Antiquity 89(343):177–90.
Taché, K, Hart, JP. 2013. Chronometric hygiene of radiocarbon databases for early durable vessel technologies in northeastern North America. American Antiquity 78(2):359–72.
Upton, A, Lovis, WA, Urquhart, GR. 2014. An empirical test of shell tempering as a proto-hominy processor. Paper presented at the 79th Annual Meeting of the Society for American Archaeology, Austin, TX, 26 April 2014.
Waugh, FW. 1916. Iroquois Foods and Food Preparation. Memoir 86. Anthropological Series 12. Ottawa: Geological Survey, Canada Department of Mines.
Yoshida, K, Kunikita, D, Miyazaki, Y, Nishida, Y, Miyao, T, Matsuzaki, H. 2013. Dating and stable isotope analysis of charred residues on the Incipient Jomon pottery (Japan). Radiocarbon 55(2–3):1322–33.
Zigah, PK, Minor, EC, Werne, JP. 2012. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior. Global Biogeochemical Cycles 26:GB1023, doi:10.1029/2011GB004132.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed