Skip to main content Accessibility help
×
Home

Establishment of Chemical Preparation Methods and Development of an Automated Reduction System for AMS Sample Preparation at Kigam

  • Wan Hong (a1), Jung Hun Park (a1), Kyeong J Kim (a1), Hyung Joo Woo (a1), Jun Kon Kim (a1), Han Woo Choi (a1) and Gi Dong Kim (a1)...

Abstract

Many previous studies on the sample preparation of various kinds of radiocarbon dating samples by accelerator mass spectrometry (AMS) have been examined at KIGAM (Korea Institute of Geoscience and Mineral Resources) and our own procedures have been established. Furthermore, an automated reduction system has been developed. The volume of the reduction region was minimized to improve the reduction yield, and air-actuated pneumatic valves and solenoid arrays were used for computer control of the system. Operation of all the valves and vacuum pumps and signals from the temperature sensors and pressure gauges were interfaced to a personal computer with an A/D board. A computer program was also developed to perform automatic operation of the reduction system. This system consistently shows a higher reduction yield than 90%. The reduction time of the system is currently 140 min.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Establishment of Chemical Preparation Methods and Development of an Automated Reduction System for AMS Sample Preparation at Kigam
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Establishment of Chemical Preparation Methods and Development of an Automated Reduction System for AMS Sample Preparation at Kigam
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Establishment of Chemical Preparation Methods and Development of an Automated Reduction System for AMS Sample Preparation at Kigam
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: whong@kigam.re.kr.

References

Hide All
Aerts-Bijma, AT, Meijer, HAJ, van der Plicht, J. 1997. AMS sample handling in Groningen. Nuclear Instruments and Methods in Physics Research B 123(1–4):221–5.
Hong, W, Park, JH, Sung, KS, Woo, HJ, Kim, JK, Choi, HW, Kim, GD. 2010. A new 1MV AMS facility at KIGAM. Radiocarbon 52(2–3):243–51.
Hua, Q, Barbetti, M, Jacobsen, GE, Zoppi, U, Lawson, EM. 2000. Bomb radiocarbon in annual tree rings from Thailand and Australia. Nuclear Instruments and Methods in Physics Research B 172(1–4):359–65.
Jacobi, RM, Higham, TFG, Bronk Ramsey, C. 2006. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration. Journal of Quaternary Science 21(5):557–73.
Kristiansen, SM, Dalsgaard, K, Holst, MK, Aaby, B, Heinemeier, J. 2003. Dating of prehistoric burial mounds by 14C analysis of soil organic matter fractions. Radiocarbon 45(1):101–12.
Le Clercq, M, van der Plicht, J, Gröning, M. 1998. New 14C reference materials with activities of 15 and 50 pMC. Radiocarbon 40(1):295–7.
Lee, C, Kim, JC, Park, JH, Kim, IC, Kang, J, Cheoun, MK, Choi, SY, Kim, YD, Moon, CB. 2000. Progress in sample preparation system for the Seoul National University AMS facility. Nuclear Instruments and Methods in Physics Research B 172(1–4):454–7.
Park, JH, Hong, W, Woo, HJ, Choi, HW, Kim, JK, Kim, GD. 2010. Simple treatment method of iron and calcium carbonate samples. Radiocarbon 52(2–3):1295–300.
Park, JY, Hong, W, Park, JH. 2009. Development of humic acid extraction method in soil and sediment using ultrasonic for 14C dating. Analytical Science & Technology 22(2):136–40. In Korean with English abstract.
Sveinbjörnsdóttir, Á, Heinemeier, J, Anórsson, S. 1995. Origin of 14C in Icelandic groundwater. Radiocarbon 37(2):551–65.
Tisnérat-Laborde, N, Poupeau, JJ, Tannau, JF, Paterne, M. 2001. Development of a semi-automated system for routine preparation of carbonate samples. Radiocarbon 43(2A):299304.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed