Skip to main content Accessibility help
×
Home

Article contents

The Effect of N2O, Catalyst, and Means of Water Vapor Removal on the Graphitization of Small CO2 Samples

Published online by Cambridge University Press:  18 July 2016


A M Smith
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
Vasilii V Petrenko
Affiliation:
Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92037, USA
Quan Hua
Affiliation:
Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales 2234, Australia
John Southon
Affiliation:
Earth System Science Department, University of California Irvine, Irvine, California 92697, USA
Gordon Brailsford
Affiliation:
National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand

Abstract

The effect of nitrous oxide (N2O) upon the graphitization of small (∼40 μg of carbon) CO2 samples at the ANSTO and University of California, Irvine, radiocarbon laboratories was investigated. Both laboratories produce graphite samples by reduction of CO2 over a heated iron catalyst in the presence of an excess of H2. Although there are significant differences between the methods employed at each laboratory, it was found that N2O has no effect upon the reaction at levels of up to 9.3% by volume of CO2. Further, it was systematically determined that more effective water vapor trapping resulted in faster reaction rates. Using larger amounts of the Fe catalyst generally resulted in higher yields or reaction rates (but not both). The effects of changing the type of Fe catalyst on the final yield and reaction rate were less clear.


Type
Articles
Copyright
Copyright © 2007 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Copeland, LE, Bragg, RH. 1954. The hydrates of magnesium perchlorate. Journal of Physical Chemistry 58(12):1075–8.CrossRefGoogle Scholar
Fink, D, Hotchkis, M, Hua, Q, Jacobsen, G, Smith, AM, Zoppi, U, Child, D, Mifsud, C, van der Gaast, H, Williams, A, Williams, M. 2004. The ANTARES AMS facility at ANSTO. Nuclear Instruments and Methods in Physics Research B 223–224:109115.Google Scholar
Hua, Q, Zoppi, U, Williams, AA, Smith, AM. 2004. Small-mass AMS radiocarbon analysis at ANTARES. Nuclear Instruments and Methods in Physics Research B 223–224:284–92.Google Scholar
Lowe, DC, Brenninkmeijer, CAM, Tyler, SC, Dlugkencky, EJ. 1991. Determination of the isotopic composition of atmospheric methane and its applications in the Antarctic. Journal of Geophysical Research 96(D8):15,45567.CrossRefGoogle Scholar
McNichol, AP, Gagnon, AR, Jones, GA, Osborne, EA. 1992. Illumination of a black box: analysis of gas composition during graphite target preparation. Radiocarbon 34(3):321–9.CrossRefGoogle Scholar
Olsson, RG, Turkdogan, ET. 1974. Catalytic effect of iron on decomposition of carbon monoxide. II. Effect of additions of H2, H2O, CO2, SO2 and H2S. Metallurgical Transactions 5(1):21–6.Google Scholar
Pearson, A. 2000. Biogeochemical applications of compound-specific radiocarbon analysis [PhD dissertation]. Cambridge: Massachusetts Institute of Technology. 352 p.Google Scholar
Pearson, A, McNichol, AP, Schneider, RJ, von Reden, KF, Zheng, Y. 1998. Microscale AMS 14C measurement at NOSAMS. Radiocarbon 40(1):6175.CrossRefGoogle Scholar
Santos, GM, Southon, JR, Druffel-Rodriguez, KC, Griffin, S, Mazon, M. 2004. Magnesium perchlorate as an alternative water trap in AMS graphite sample preparation: a report on sample preparation at KCCAMS at the University of California, Irvine. Radiocarbon 46(1):165–73.CrossRefGoogle Scholar
Southon, J, Santos, G, Druffel-Rodriguez, K, Druffel, E, Trumbore, S, Xu, X, Griffin, S, Ali, S, Mazon, M. 2004. The Keck Carbon Cycle AMS Laboratory, University of California, Irvine: initial operation and a background surprise. Radiocarbon 46(1):41–9.CrossRefGoogle Scholar
Verkouteren, RM, Klouda, GA. 1992. Factorial design techniques applied to optimization of AMS graphite target preparation. Radiocarbon 34(3):335–43.CrossRefGoogle Scholar
Verkouteren, RM, Klouda, GA, Currie, LA, Donahue, DJ, Jull, AJT, Linick, TW. 1987. Preparation of microgram samples on iron wool for radiocarbon analysis via accelerator mass spectrometry: a closed-system approach. Nuclear Instruments and Methods in Physics Research B 29(1–2):41–4.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 109 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Access
Hostname: page-component-79f79cbf67-8q5vc Total loading time: 6.822 Render date: 2020-12-02T10:54:43.364Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 10:06:47 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Effect of N2O, Catalyst, and Means of Water Vapor Removal on the Graphitization of Small CO2 Samples
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The Effect of N2O, Catalyst, and Means of Water Vapor Removal on the Graphitization of Small CO2 Samples
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The Effect of N2O, Catalyst, and Means of Water Vapor Removal on the Graphitization of Small CO2 Samples
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *