Skip to main content Accessibility help
×
Home

Development of Radiocarbon Dating Methods for Modern Bone Collagenization

  • K J Kim (a1), W Hong (a1), J H Park (a1), H J Woo (a1), G Hodgins (a2) and A J T Jull (a2)...

Abstract

The relationship between temperature and time required for collagenization using modern bone samples was investigated. Gelatinized samples of bone collagen were filtered to selectively collect different molecular weight fractions. The results of this study suggest that heating to 70 ° for a duration of 12 hr provides the optimal conditions for gelatinization.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Development of Radiocarbon Dating Methods for Modern Bone Collagenization
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Development of Radiocarbon Dating Methods for Modern Bone Collagenization
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Development of Radiocarbon Dating Methods for Modern Bone Collagenization
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: kjkim@kigam.re.kr.

References

Hide All
Beaumont, W, Beverly, R, Southon, J, Taylor, RE. 2010. Bone preparation at the KCCAMS laboratory. Nuclear Instruments and Methods in Physics Research B 268(7–8):906–9.
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171–7.
Hedges, REM, van Klinken, GJ. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS. Radiocarbon 34(2):279–91.
Henderson, J. 1987. Factors determining the state of preservation of human remains. In: Boddington, A, Garland, AN, Janaway, RC, editors. Death, Decay, and Reconstruction. Manchester: Manchester University Press. p 4354.
Jacobi, RM, Higham, TFG, Bronk Ramsey, C. 2006. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration. Journal of Quaternary Science 21(5):557–73.
Kim, KJ, Jull, AJT, Kim, JY, Lee, YJ, Woo, HJ. 2010. Radiocarbon dating of the Mansuri Paleolithic site, Cheongwon, Korea. Radiocarbon 52(4):1545–51.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed