Skip to main content Accessibility help
×
Home

Development of Radiocarbon Dating Method for Degraded Bone Samples from Korean Archaeological Sites

  • K J Kim (a1), W Hong (a1), J H Park (a1), H J Woo (a1), G Hodgins (a2), A J T Jull (a2), Y J Lee (a3) and J Y Kim (a1)...

Abstract

The development of radiocarbon dating for degraded bone samples collected at Korean archaeological sites has been successful through the characterization of raw bone C/N ratios and application of an ultrafiltration method. It was found that the C/N ratios of raw bone samples are inversely proportional to the carbon content and residue amount after gelatinization. We have examined a few dozen Korean archaeological bone samples for this study. Well-preserved bone samples are found to be physically dense. The range of C/N ratios of Korean raw bone samples ranged from 3.4 to 74. We found that the C/N ratios of degraded raw bone samples can be used to determine whether 14C samples are acceptable for normal pretreatment processing and eventual dating. The results of this study support that even if the C/N ratio of a degraded raw bone sample is 11, extraction of collagen for bone dating is feasible by a carefully designed ultrafiltration process. Our preliminary 14C dating results of a depth profile of Gunang-gul Cave, an archaeological site in Danyang, Korea, indicate that this site has been either geologically or anthropologically disturbed in the past, with 14C ages ranging from 28,910 ± 200 to 48,090 ± 1050 yr BP. The C/N ratios of the collagen samples of Gunang-gul were determined to be 3.2–3.6. Our study establishes a new guide for the pretreatment of degraded bone samples such as those collected in Korea for 14C dating.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Development of Radiocarbon Dating Method for Degraded Bone Samples from Korean Archaeological Sites
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Development of Radiocarbon Dating Method for Degraded Bone Samples from Korean Archaeological Sites
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Development of Radiocarbon Dating Method for Degraded Bone Samples from Korean Archaeological Sites
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: kjkim@kigam.re.kr.

References

Hide All
Ajie, HO, Hauschka, PV, Kaplan, IR, Sobel, H. 1991. Comparison of bone collagen and osteocalcin for determination of radiocarbon ages and paleodietary reconstruction. Earth and Planetary Science Letters 107(2):380–8.
Berna, F, Matthews, A, Weiner, S. 2003. Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science 31(7):867–82.
Hedges, REM, van Klinken, GJ. 1992. A review of current approaches in the pretreatment of bone for radiocarbon dating by AMS. Radiocarbon 34(2):279–91.
Henderson, J. 1987. Factors determining the state of preservation of human remains. In: Boddington, A, Garland, AN, Janaway, RC, editors. Death, Decay, and Reconstruction. Manchester: Manchester University Press. p 4354.
Jacobi, RM, Higham, TFG, Bronk Ramsey, C. 2006. AMS radiocarbon dating of Middle and Upper Palaeolithic bone in the British Isles: improved reliability using ultrafiltration. Journal of Quaternary Science 21(5):557–73.
Kim, KJ, Hong, W, Park, JH, Woo, HJ, Hodgins, G, Jull, AJT. 2010. Development of radiocarbon dating methods for modern bone collagenization. Radiocarbon 52(4):1657–9.
Minami, M, Muto, H, Nakamura, T. 2004. Chemical techniques to extract organic fractions from fossil bones for accurate 14C dating. Nuclear Instruments and Methods in Physics Research B 223–224:302–7.
Stafford, TW Jr, Brendel, K, Duhamel, RC. 1988. Radiocarbon, 13C, 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochimica et Cosmochimica Acta 52(9):2257–67.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed