Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-28T09:47:22.248Z Has data issue: false hasContentIssue false

Dendrochronological Potential of Fraxinus Uhdei and Its Use as Bioindicator of Fossil CO2 Emissions Deduced from Radiocarbon Concentrations in Tree Rings

Published online by Cambridge University Press:  09 February 2016

Laura E Beramendi-Orosco
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF 04510, México
Sergio Hernandez-Morales
Affiliation:
Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF 04510, México
Galia Gonzalez-Hernandez
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México DF 04510, México
Vicenta Constante-Garcia
Affiliation:
Laboratorio Nacional de Dendrocronología, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Gómez Palacio, Durango, Apdo Postal 41, México
Jose Villanueva-Diaz
Affiliation:
Laboratorio Nacional de Dendrocronología, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Gómez Palacio, Durango, Apdo Postal 41, México

Abstract

Dendrochronological studies are limited in tropical regions because not many tree species form annual growth rings. This work reports an evaluation of the dendrochronological potential of tropical ash (Fraxinus uhdei) and its use as a bioindicator of fossil CO2 concentration in urban areas by means of radiocarbon analysis on growth rings. We analyzed a cross-section of a tree that grew during the period 1932–2007 in San Luis Potosí, one of the most industrialized cities in Mexico. The Δ14C values obtained follow the same variation pattern as the calibration curve of the Northern Hemisphere (NH) zone 2 (Hua and Barbetti 2004), with the peak centered in 1964, but they are lower by up to 124′. The high correlation coefficient (r = 0.990, p < 0.001) between the variation patterns indicates that this species does form annual growth rings, and the lower values can be attributed to the 14C dilution caused by fossil CO2 emissions. The magnitude of the Suess effect varied between −6.9% and −0.5%, equivalent to fossil CO2 concentrations ranging between 21.9 and 1.5 ppmv. The Suess effect and fossil CO2 values have significant variations with no apparent monotone increasing trend, suggesting that the CO2 emissions during the studied period have diverse sources. It is concluded that F. uhdei has potential for dendrochronological studies in tropical areas because its growth rings are formed annually and, furthermore, it can be used as a bioindicator of atmospheric 14C variations and fossil CO2 concentration in urban areas.

Type
Articles
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beramendi-Orosco, LE, Gonzalez-Hernandez, G, Urrutia-Fucugauchi, J, Morton-Bermea, O. 2006. Radiocarbon Laboratory at the National Autonomous University of Mexico: first set of samples and new 14C internal reference material. Radiocarbon 48(3):485–91.CrossRefGoogle Scholar
Carranza-Alvarez, C, Alonso-Castro, AJ, Alfaro-De La Torre, MC, García-De La Cruz, RF. 2008. Accumulation and distribution of heavy metals in Scirpus americanus and Typha latifolia from an artificial lagoon in San Luis Potosí, México. Water Air and Soil Pollution 188(1–4):297–309.Google Scholar
Coplen, TB, Brand, WA, Gehre, M, Gröning, M, Meijer, HAJ, Toman, B, Verkouteren, RM. 2006. New guidelines for δ13C measurements. Analytical Chemistry 78(7):2439–41.Google Scholar
Djuricin, S, Pataki, DE, Xu, X. 2010. A comparison of tracer methods for quantifying CO2 sources in an urban region. Journal of Geophysical Research 115: D11303, doi: 10.1029/2009JD012236.CrossRefGoogle Scholar
Djuricin, S, Xu, X, Pataki, DE. 2012. The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles basin: 1980–2008. Journal of Geophysical Research 117: D12302, doi: 10.1029/2011JD017284.Google Scholar
Etheridge, DM, Steele, LP, Langenfelds, RL, Francey, RJ, Barnola, J-M, Morgan, VI. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. Journal of Geophysical Research 101(D2):4115–28.Google Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):1273–98.Google Scholar
Instituto Nacional de Estadística y Geografía (INEGI). 2005. Segundo conteo de población y vivienda. http://www.inegi.org.mx/est/contenidos/proyectos/ccpv/cpv2005/Default.aspx. Accessed September 2012.Google Scholar
Keeling, RF, Piper, SC, Bollenbacher, AF, Walker, JS. 2009. Atmospheric CO2 records from sites in the SIO air sampling network. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee, U.S.A. doi: 10.3334/CDIAC/atg.035.Google Scholar
Levin, I, Hesshaimer, V. 2000. Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42(1):6980.Google Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194, doi:10.1029/2003GL018477.Google Scholar
Levin, I, Hammer, S, Kromer, B, Meinhardt, F. 2008. Radiocarbon observations in atmospheric CO2: determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Science of the Total Environment 391(2–3):211–6.Google Scholar
Miranda-Aviles, R, Puy-Alquiza, MJ, Martinez-Reyes, JJ. 2009. Potencial del uso del Fresno (Fraxinus udhei) en estudios dendrocronológicos. Conciencia Tecnológica 38:24–9.Google Scholar
Rakowski, AZ, Pawelczyk, S, Pazdur, A. 2001. Changes of 14C concentration in modern trees from Upper Silesia region, Poland. Radiocarbon 43(2B):679–89.Google Scholar
Rakowski, AZ, Nakamura, T, Pazdur, A. 2008. Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings. Journal of Environmental Radioactivity 99(10):1558–65.CrossRefGoogle ScholarPubMed
Rozendaal, DMA, Zuidema, PA. 2011. Dendroecology in the tropics: a review. Trees 25(1):316.Google Scholar
Stuiver, M, Polach, H. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.Google Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):415–7.Google Scholar
Worbes, M. 2002. One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20(1–2):217–31.CrossRefGoogle Scholar
Worbes, M, Junk, W. 1989. Dating tropical trees by means of 14C from bomb tests. Ecology 70(2):503–7.CrossRefGoogle Scholar