Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T03:41:24.130Z Has data issue: false hasContentIssue false

Cross-Flow Nanofiltration of Contaminated Protein-Containing Material: State of the Art

Published online by Cambridge University Press:  11 December 2017

Mathieu Boudin*
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Marco Bonafini
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Tess van den Brande
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
Ina Vanden Berghe
Affiliation:
Royal Institute for Cultural Heritage, Jubelpark 1, 1000 Brussels, Belgium
*
*Corresponding author. Email: mathieu.boudin@kikirpa.be.

Abstract

Radiocarbon (14C) dating of protein-containing material (collagen, hair/wool, silk, leather) contaminated with extraneous carbon (e.g. humic substances) might result in unreliable dates when pretreated with the conventional but inadequate protocols. In this study cross-flow nanofiltration was applied to pretreated, protein-containing material. This method is able to remove low-molecular and high-molecular weight contaminants as demonstrated in previous studies. The sample quality improvement by cross-flow nanofiltration is verified by measuring the C:N ratio before and after nanofiltration. If the C:N ratio of the permeate (sample after cross-flow nanofiltration) falls within the C:N boundaries for uncontaminated wool/hair, silk and bone collagen, it is assumed to be contamination free. In our study, we focused on wool, silk, and collagen samples of known historical age. All samples treated by cross-flow nanofiltration effectively outputs C:N ratios within the expected range and yield for more accurate 14C date in agreement with historical expectations whereas bulk samples with C:N ratio out of the expected ranges, give either younger or older dates. We thus highlight both that C:N ratio is a good indicator of contamination and that cross-flow nanofiltration is an efficient method to treat protein-containing materials prior to 14C dating.

Type
Method Development
Copyright
© 2017 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Selected Papers from the 8th Radiocarbon & Archaeology Symposium, Edinburgh, UK, 27 June–1 July 2016

References

REFERENCES

Ambrose, SH. 1990. Preparation and characterization of bone and tooth collagen for isotopic for isotopic analysis. Journal of Archaeological Science 17(4):431451.CrossRefGoogle Scholar
Arslanov, KhA, Svezehentsev, YuS. 1993. An improved method for radiocarbon dating of fossil bones. Radiocarbon 35(3):397–92.CrossRefGoogle Scholar
Asquith, RS. editor. 1977. Chemistry of Natural Protein Fibers. New York: Plenum Press.CrossRefGoogle Scholar
Benfer, RA, Typpo, JT, Graff, VB. 1978. Mineral analysis of ancient Peruvian hair. American Journal of Physical Anthropology 48(3):277282.CrossRefGoogle ScholarPubMed
Boudin, M, Boeckx, P, Vandenabeele, P, Mitschke, S, Van Strydonck, M. 2011. Monitoring the presence of humic substances in wool and silk by the use of non-destructive fluorescence spectroscopy: quality control for 14C dating of wool and silk. Radiocarbon 53(3):429442.CrossRefGoogle Scholar
Boudin, M, Boeckx, P, Buekenhoudt, A, Vandenabeele, P, Van Strydonck, M. 2013a. Development of a nanofiltration method for bone collagen 14C AMS dating. Nuclear Instruments and Methods in Physics Research B 294:233239.CrossRefGoogle Scholar
Boudin, M, Boeckx, P, Vandenabeele, P, Van Strydonck, M. 2013b. Improved radiocarbon dating for contaminated archaeological bone collagen, silk, wool and hair samples via cross-flow nanofiltrated amino acids. Rapid Communications for Mass Spectrometry 27(18):20392050.CrossRefGoogle ScholarPubMed
Boudin, M, Boeckx, P, Vandenabeele, P, Van Strydonck, M. 2014. An archaeological mystery revealed by radiocarbon dating of cross-flowed nanofiltrated amino acids derived from bone collagen, silk, and hair: case study of the Bishops Baldwin I and Radbot II from Noyon-Tournai. Radiocarbon 56(2):603617.CrossRefGoogle Scholar
Boudin, M, Van den Brande, T, Synal, H-A, Wacker, L, Van Strydonck, M. 2015. RICH – a new AMS facility at the Royal Institute for Cultural Heritage, Brussels Belgium. Nuclear Instruments and Methods in Physics Research B 361:120123.CrossRefGoogle Scholar
Boudin, M, Bonafini, M, Vanden Berghe, I, Maquoi, M-C. 2016. Naturally dyed wool and silk and their atomic C:N ratio for quality control of 14C sample treatment. Radiocarbon 58(1):5568.CrossRefGoogle Scholar
Brock, F, Bronk Ramsey, C, Higham, T. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187192.CrossRefGoogle Scholar
Brock, F. 2013. Radiocarbon dating of historical parchments. Radiocarbon 55(2–3):353363.CrossRefGoogle Scholar
Bronk Ramsey, C. 1995. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37(2):425430.CrossRefGoogle Scholar
Bronk Ramsey, C. 2001. Development of the radiocarbon calibration program. Radiocarbon 43(2A):355363.CrossRefGoogle Scholar
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, REM. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155163.CrossRefGoogle Scholar
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction by modified Longin method. Radiocarbon 30(2):171177.CrossRefGoogle Scholar
Buekenhoudt, A, Bisignano, F, DeLuca, G, Vandezande, P, Wouters, M, Verhulst, K. 2013. Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes. Journal of Membrane Science 439:3647.CrossRefGoogle Scholar
Cassau, A. 1935. Ein Feuersteindolch mit Holzgriff und Lederscheide aus Wiepenkathen. Kr. Stade, Mannus 27:199209.Google Scholar
Cau Ontiveros, , Van Strydonck, M, Boudin, M, Mas Florit, C, Mestres, JS, Cardona, F, Chavez-Alvarez, E, Orfila, M. 2016. Christians in a Muslim world? Radiocarbon dating of the cemetery overlaying the forum of Pollentia (Mallorca, Balearic Islands). Archaeological and Anthropological Science. DOI: 10.1007/s12520-016-0325-0.CrossRefGoogle Scholar
Chavan, S, McCullagh, J, Hedges, REM, Bonsall, C, Boroneant, A, Bronk Ramsay, C, Higham, T. 2013. Compound-specific radiocarbon dating of essential and non-essential amino acids: towards determination of dietary reservoir effects in humans. Radiocarbon 55(1):709719.CrossRefGoogle Scholar
Cobzac, S, Moldovan, M, Olah, NK, Bobos, L, Surducan, E. 2005. Tannin extraction efficiency, from Rubus Idaeus, Cydonia Oblonga and Rumex Acetosa, using different extraction techniques and spectrophotometric quantification. Acta Universitatis Cibiniensis Seria F Chemia 8(2):5559.Google Scholar
Delaunois, E, Hardy, C. 2015. Mise au jour des vestiges d’églises médiévales et des temps modernes à Balâtre (Jemeppe-sur-Sambre). Pré-actes des journées d’Archéologie en Wallonie, Rochefort 2015, Rapport Archéologie 1:9294.Google Scholar
De Niro, MJ. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317:806.CrossRefGoogle Scholar
Eriksson, P. 1988. Nanofiltration extends the range of membrane filtration. Environmental Progress 7(1):5862.CrossRefGoogle Scholar
Geyh, ME. 2001. Bomb radiocarbon dating of animal tissues and hair. Radiocarbon 43(2B):723730.CrossRefGoogle Scholar
Gillespie, R, Hedges, REM. 1983. Sample chemistry for the Oxford high energy mass spectrometer. Radiocarbon 25(3):771774.CrossRefGoogle Scholar
Gillespie, R, Hedges, REM, Wand, JO. 1984. Radiocarbon dating of bone by accelerator mass spectrometry. Journal of Archaeological Science 11:165170.CrossRefGoogle Scholar
Groenman-Van Waateringe, W, Kilian, M, van Londen, H. 1999. The curing of hides and skins in European prehistory. Antiquity 73:884890.CrossRefGoogle Scholar
Hadjas, I, Cristi, C, Bonani, G, Maurer, M. 2014. Textiles and radiocarbon dating. Radiocarbon 56(2):637643.Google Scholar
Haslam, E. 1966. Chemistry of Vegetable Tannins. London and New York: Academic Press.Google Scholar
Higham, T, Bronk Ramsey, C, Karavanic, I, Smith, FH, Trinkaus, E. 2006. Revised direct radiocarbon dating of the Vindija G1 Upper Paleolithic Neandertals. Proceedings of the National Academy of Science (USA) 103(3):553557.CrossRefGoogle ScholarPubMed
Hüls, CM, Grootes, PM, Nadeau, M-J. 2007. How clean is ultra filtration cleaning of bone collagen? Radiocarbon 49(2):193200.CrossRefGoogle Scholar
Hüls, CM, Grootes, PM, Nadeau, M-J. 2009. Ultrafiltration: boon or bane? Radiocarbon 51(2):613625.CrossRefGoogle Scholar
Kim, KJ, Southon, J, Imamura, M, Sparks, R. 2008. Development of sample pretreatment of silk for radiocarbon dating. Radiocarbon 50(1):131138.CrossRefGoogle Scholar
Knapp, F. 1858. Nature und Wesen der Gerberei and des Leders. Jena, Germany: J.G. Cotta.Google Scholar
Koros, WJ, Ma, YH, Shimidzu, T. 1996. Terminology for membranes and membrane processes. Pure and Applied. Chemistry 68:14791489.CrossRefGoogle Scholar
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230:241242.CrossRefGoogle ScholarPubMed
Mannering, U, Possnert, G, Heinemeier, J, Gleba, M. 2010. Dating Danish textiles and skins from bog finds by means of 14C AMS. Journal of Archaeological Science 37:261268.CrossRefGoogle Scholar
Marom, A, McCullagh, JSO, Higham, TFG, Sinitsyn, AA, Hedges, REM. 2012. Single amino acid radiocarbon dating of Upper Paleolithic modern humans. Proceedings of the National Academy of Sciences USA 109:68786881.CrossRefGoogle ScholarPubMed
Marom, A, McCullagh, JSO, Higham, TFG, Hedges, REM. 2013. Hydroxyproline dating: experiments on the 14C analysis of contaminated and low-collagen bones. Radiocarbon 55(2–3):698708.CrossRefGoogle Scholar
McCullagh, JSO, Marom, A, Hedges, REM. 2010. Radiocarbon dating of individual amino acids from archaeological bone collagen. Radiocarbon 52(2):620634.CrossRefGoogle Scholar
Mellars, P. 2006. A new radiocarbon revolution and the dispersal of modern humans in Eurasia. Nature 439(7079):931935.CrossRefGoogle ScholarPubMed
Mulder, M. 1996. Basic Principles of Membrane Technology. The Netherlands: Kluwer Academics. p 1564.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, ST, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Ryder, ML. 1964. The history of sheep breeds in Britain. The Agricultural History Review 12(1):112.Google Scholar
Santos, GM, Martinez De La Torre, HA, Boudin, M, Bonafini, M, Saverwyns, S. 2015. Improved radiocarbon analyses of modern human hair to determine the year-of-death by cross-flow nanofiltered amino acids: common contaminants, implications for isotopic analysis, and recommendations. Rapid Communications for Mass Spectrometry 29:17651773.CrossRefGoogle ScholarPubMed
Schafer, AI, Fane, AG, Waite, TD. 2004. Nanofiltration: Principles and Applications. Oxford: Elsevier Science.Google Scholar
Shennan, S. 1988. Quantifying Archaeology. Edinburgh: Edinburgh University Press.Google Scholar
Stafford, TW Jr, Jull, AJT, Brendel, K, Duhamel, RC, Donahue, D. 1987. Study of bone radiocarbon dating accuracy at the University of Arizona NSF Accelerator Facility for Radioisotope Analysis. Radiocarbon 29(1):2444.CrossRefGoogle Scholar
Stafford, TW Jr, Brendel, K, Duhamel, RC. 1988. Radiocarbon 13C and 15N analysis of fossil bone: removal of humates with XAD-2 resin. Geochimica and Cosmochimica Acta 52(9):22572267.CrossRefGoogle Scholar
Stafford, TW Jr, Hare, PE, Currie, L, Jull, AJT, Donahue, D. 1991. Accelerator radiocarbon dating at the molecular level. Journal of Archaeoogical Science 18(1):3572.CrossRefGoogle Scholar
Stevenson, FJ. 1982. Genesis, composition, reactions. In: Stevenson FJ, editor. Humus Chemistry. New York: Wiley-Interscience. p 1443.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion—reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Taylor, RE, Hare, PE, Prior, CA, Kirner, DL, Wan, L, Burky, RR. 1995. Radiocarbon dating of biochemically characterized hair. Radiocarbon 37(2):319330.CrossRefGoogle Scholar
Tripp, JA, McCullagh, JSO, Hedges, REM. 2006. Preparative separation of underivatized amino acids for compound-specific stable isotope analysis and radiocarbon dating of hydrolysed bone collagen. Journal of Separation Science 29:4148.CrossRefGoogle Scholar
Van Cleven, F, Vanden Berghe, I, Boudin, M, Coudray, A, Bungeneers, J, Hendriks, V, Mees, M, Quintelier, K, Vanden Bosch, G, Van Bos, M, Vandorpe, M, Van Strydonck, M, Watteeuw, L, Bourgeois, I. 2018. A box full of surprises: Relics excavated in St Rumbold’s Cathedral (Mechelen, Belgium). Interdisciplinary Studies in Ancient Culture and Religion. In press.CrossRefGoogle Scholar
Van den Berghe, I, Gleba, M, Mannering, U. 2009. Towards the identification of dyestuffs in Early Iron Age Scandinavian peat bog textiles. Journal of Archaeological Science 36(9):19101921.CrossRefGoogle Scholar
van Klinken, GJ, Mook, WG. 1990. Preparative high performance liquid chromatographic separation of individual amino acids derived from fossil bone collagen. Radiocarbon 32(2):155164.CrossRefGoogle Scholar
van Klinken, GJ, Hedges, REM. 1995. Experiments on collagen-humic interactions: speed of humic uptake, and effects of diverse chemical treatments. Journal of Archaeological Science 22(2):263270.CrossRefGoogle Scholar
van Klinken, GJ. 1999. Bone collagen quality indicators for palaeodietary and radiocarbon measurements. Journal of Archaeological Science 26:687695.CrossRefGoogle Scholar
Van Laere, R, Vanden Berghe, I, Van Bos, M, Van Cleven, F, Boudin, M. 2017. Two 15th century cloth fragments with their seals from Bruges and Dordrecht. Revue belge d’Archéologie et d’Histoire de l’Art = Belgisch Tijdschrift voor Oudheidkunde en Kunstgeschiedenis. In press.Google Scholar
Van Strydonck, M, De Moor, A, Bénazeth, D. 2004. 14C dating compared to art historical dating of Roman and Coptic textiles from Egypt. Radiocarbon 46(1):231244.CrossRefGoogle Scholar
Van Strydonck, M, Boudin, M, Ervynck, A. 2005. Humans and Myotragus: the issue of sample integrity in radiocarbon dating. In: Alcover JA, Bover P, editors. Monografies de la Societat d’Història Natural de les Balears 12. Palma: La Societat. p 369376.Google Scholar
Van Strydonck, M, Boudin, M, Van den Brande, T, Saverwyns, S, Van Acker, J, Lehouck, A, Vanclooster, D. 2016. 14C-dating of the skeleton remains and the content of the lead coffin attributed to the Blessed Idesbald (Abbey of the Dunes, Koksijde, Belgium). Journal of Archaeological Science Reports 5:276284.CrossRefGoogle Scholar
Van Strydonck, M, van der, Borg. 1990–1. The construction of a preparation line for AMS-targets at the Royal Institute for Cultural Heritage, Brussels. Bulletin Koninklijk Instituut voor Kunstpatrimonium 23:228234.Google Scholar
Wang, XL, Shang, WL, Wang, DX, Wu, L, Tu, CH. 2009. Characterization and applications of nanofiltrationmembranes: state of the art. Desalination 236(1–3):316326.CrossRefGoogle Scholar
Wouters, J. 1992. Opbouw en analyse van leder: een uiteenzetting voor een beter begrip van conservatorische problemen en ingrepen. Monumenten & Landschappen 11(6):4754.Google Scholar