Skip to main content Accessibility help
×
Home

Coral Reef Evolution at the Leeward Side of Ishigaki Island, Southwest Japan

  • Hiroya Yamano (a1), Osamu Abe (a2), Hiroyuki Kitagawa (a2), Etsuko Niu (a3) and Toshio Nakamura (a3)...

Abstract

In comparison with windward coral reefs, the facies and evolution of leeward coral reefs has been discussed to a lesser extent. By accelerator mass spectrometry (AMS) carbon-14 dating of coral specimens collected from the trench excavated across a modern coral reef during a fishery port repair, we revealed the internal facies and Holocene evolution of a leeward reef in Ishigaki Island, Ryukyu Islands, southwest Japan. The reef facies can be split into three facies: the tabular Acropora framework facies, the tabular Acropora reworked facies, and the unconsolidated bioclast facies. The tabular Acropora reworked facies first formed a ridge by 3500 BR Then, the tabular Acropora framework facies grew both upward and seaward. The accumulation rates of the tabular Acropora framework facies ranged from 2.2 to 8.3 m/ka. Thus, the reef framework facies and accumulation rates of this leeward reef is similar to those of windward reefs, although the age of the reef top is younger than that of windward reefs.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Coral Reef Evolution at the Leeward Side of Ishigaki Island, Southwest Japan
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Coral Reef Evolution at the Leeward Side of Ishigaki Island, Southwest Japan
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Coral Reef Evolution at the Leeward Side of Ishigaki Island, Southwest Japan
      Available formats
      ×

Copyright

References

Hide All
Blanchon, P, Jones, B, Kalbfleich, W. 1997. Anatomy of a fringing reef around Grand Cayman: storm rubble, not coral framework. Journal of Sedimentary Research 67:116.
Burr, GS, Edwards, RL, Donahue, DJ, Druffel, ERM, Taylor, FW. 1992. Mass spectrometric 14C and U-Th measurements in coral. Radiocarbon 34(3):611–8.
Cabioch, G, Camoin, GF, Montaggioni, LF. 1999. Postglacial growth history of a French Polynesian barrier reef tract, Tahiti, central Pacific. Sedimentology 46:9851000.
Davies, PJ, Montaggioni, LF. 1985. Reef growth and sea-level change: the environmental signature. Proceedings of the Fifth International Coral Reef Congress 3:477515.
Done, TJ. 1983. Coral zonation: its nature and significance. In: Barnes, DJ, editor. Perspectives in coral reefs. Townsville Australia: AIMS. p 107–47.
Geister, J. 1977. The influence of wave exposure on the ecological zonation of Caribbean coral reefs. Proceedings of the Third International Coral Reef Symposium 1:23–9.
Hideshima, S, Matsumoto, E, Abe, O, Kitagawa, H. 2001. Marine reservoir correction estimated from annually banded coral from northwest Pacific Ocean. Radiocarbon this issue.
Hopley, D, Barnes, R. 1985. Structure and development of a windward fringing reef, Orpheus Island, Palm Group, Great Barrier Reef. Proceedings of the Fifth International Coral Reef Congress 3:141–6.
Kan, H, Hori, N. 1991. Methodology and conceptual design for geomorphological surveying of submarine ‘road cut’ in modern reef-flats. Geographical Sciences 46:6881.
Kan, H, Hori, N. 1993. Formation of topographic zonation on the well-developed fringing reef-flat, Minna Island, the Central Ryukyus. Transactions, Japanese Geomorphological Union 14:116.
Kan, H, Hori, N, Kawana, N, Kaigara, T, Ichikawa, K. 1997a. The evolution of a Holocene fringing reef and island: reefal environmental sequence and sea level change in Tonaki Island, the Central Ryukyus. Atoll Research Bulletin 443:120.
Kan, H, Hori, N, Nakashima, Y, Ichikawa, K. 1995. The evolution of narrow reef flats at high-latitude in the Ryukyu Islands. Coral Reefs 14:123–30.
Kan, H, Nakashima, Y, Hopley, D. 1997b. Coral communities during structural development of a fringing reef flat, Hayman Island, the Great Barrier Reef. Proceedings of the 8th International Coral Reef Symposium 1:465–70.
Kawana, T. 1987. Holocene crustal movement in and around the Sekisei Lagoon in Okinawa Prefecture, Japan. Earth Monthly 9:129–34. In Japanese, original title translated.
Kawana, T. 1989. Quaternary crustal movement in the Ryukyu Islands. Earth Monthly 11:618–30. In Japanese, original title translated.
Kayanne, H. 1992. Deposition of calcium carbonate into Holocene reefs and its relation to sea-level rise and atmospheric CO2 . Proceedings of the 7th International Coral Reef Symposium 1:50–5.
Loya, Y. 1978. Plotless and transect methods. In: Stoddart, DR, Johannes, RE, editors. Coral reefs: research methods. Paris: UNESCO. p 197217.
McLean, RF, Woodroffe, CD. 1994. Coral atolls. In: Carter, RWG, Woodroffe, CD, editors. Coastal evolution, Late Quaternary shoreline morphodynamics. New York: Cambridge University Press. p 267302.
Nakada, M. 1986. Holocene sea levels in oceanic islands: implications for the rheological structure of the earth's mantle. Tectonophysics 121:263–76.
Nakamura, T, Niu, E, Oda, H, Ikeda, A, Minami, M, Takahashi, H, Adachi, M, Pals, L, Gottdang, A, Suya, N. 2000. The HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research B172:52–7.
Neumann, AC, Macintyre, IG. 1985. Reef response to sea level rise: keep up, catch up or give up. Proceedings of the Fifth International Coral Reef Congress 3:105–10.
Pandolfi, JM, Llewellyn, G, Jackson, JBC. 1999. Pleistocene reef environments, constituent grains, and coral community structure: Curaçao, Netherlands Antilles. Coral Reefs 18:107–22.
Roberts, HH, Murray, SP, Suhayda, JN. 1975. Physical processes in a fringing reef system. Journal of Marine Research 33:233–60.
Stuiver, M, Braziunas, TF. 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35(1):137–89.
Stuiver, M, Pearson, GW, Braziunas, T. 1986. Radiocarbon age calibration of marine samples back to 9000 cal yr BP. Radiocarbon 28(2):9801021.
Yamano, H, Kayanne, H, Yonekura, N. 2001. Anatomy of a modern coral reef flat: a recorder of storms and uplift in the late Holocene. Journal of Sedimentary Research 71:295304.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed