Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-hcvhd Total loading time: 0.408 Render date: 2021-04-14T21:31:39.338Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Comparison of 14C and U-Th Ages in Corals from IODP #310 Cores Offshore Tahiti

Published online by Cambridge University Press:  09 February 2016

Nicolas Durand
Affiliation:
CEREGE, Aix-Marseille Univ., CNRS, IRD, Collège de France, Technopole de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
Pierre Deschamps
Affiliation:
CEREGE, Aix-Marseille Univ., CNRS, IRD, Collège de France, Technopole de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
Edouard Bard
Affiliation:
CEREGE, Aix-Marseille Univ., CNRS, IRD, Collège de France, Technopole de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
Bruno Hamelin
Affiliation:
CEREGE, Aix-Marseille Univ., CNRS, IRD, Collège de France, Technopole de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
Gilbert Camoin
Affiliation:
CEREGE, Aix-Marseille Univ., CNRS, IRD, Collège de France, Technopole de l'Arbois, BP 80, 13545 Aix-en-Provence Cedex 4, France
Alexander L Thomas
Affiliation:
Department of Earth Sciences, South Parks Road, Oxford OX1 3 AN, United Kingdom
Gideon M Henderson
Affiliation:
Department of Earth Sciences, South Parks Road, Oxford OX1 3 AN, United Kingdom
Yusuke Yokoyama
Affiliation:
Atmosphere and Ocean Research Institute and Department of Earth and Planetary Science University of Tokyo, 5-1-5 Kashiwanoha, Kashiwashi, Chiba 277-8564, Japan Institute of Biogeosciences, JAMSTEC, Yokosuka, Japan
Hiroyuki Matsuzaki
Affiliation:
Department of Nuclear Engineering and Management, University of Tokyo, 2-11-16 Yayoi, Tokyo 113-0032, Japan
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Shallow-water tropical corals can be used to calibrate the radiocarbon timescale. In this paper, we present a new data set based on the comparison between 14C ages and U-Th ages measured in fossil corals collected offshore the island of Tahiti during the Integrated Oceanic Drilling Program (IODP) Expedition 310. After applying strict mineralogical and geochemical screening criteria, the Tahiti record provides new data for 2 distinct time windows: 7 data for the interval between 29 and 37 cal kyr BP and 58 for the last deglaciation period, notably a higher resolution for the 14–16 cal kyr BP time interval. There are 3 main outcomes of this study. First, it extends the previous Tahiti record beyond 13.9 cal kyr BP, the oldest U-Th age obtained on cores drilled onshore in the modern Tahiti barrier reef. Second, it strengthens the data set of the 14–15 cal kyr BP period, allowing for better documentation of the 14C age plateau in this time range. This age plateau corresponds to a drop of the atmospheric 14C synchronous with an abrupt period of sea-level rise (Melt Water Pulse 1 A, MWP-1 A). The Tahiti 14C record documents complex changes in the global carbon cycle due to variations in the exchange rates between its different reservoirs. Third, during the Heinrich event 1, the Tahiti record disagrees with the Cariaco record, but is in broad agreement with other marine and continental data.

Type
Research Article
Copyright
Copyright © 2013 by the Arizona Board of Regents on behalf of the University of Arizona 

Footnotes

2

Present address: Laboratoire de Mesure du Carbone 14 UMS 2572, CEA-Saclay, Bât. 450, 91191 Gif-sur-Yvette Cedex, France.

References

Andersen, MB, Stirling, CH, Potter, E-K, Halliday, AN. 2004. Toward epsilon levels of measurement precision on 234U/238U by using MC-ICPMS. International Journal of Mass Spectrometry 237:107–18.CrossRefGoogle Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications. Paleoceanography 3(6):635–45.CrossRefGoogle Scholar
Bard, E. 1998. Geochemical and geophysical implications of the radiocarbon calibration. Geochimica et Cosmochimica Acta 62(12):2025–38.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A. 1990a. Calibration of the 14C timescale over the past 30,000 years using mass-spectrometric U-Th ages from Barbados corals. Nature 345(6274):405–10.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG. 1990b. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. Nature 346(6283):456–8.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Fairbanks, RG, Zindler, A, Mathieu, G, Arnold, M. 1990c. U/Th and 14C ages of corals from Barbados and their use for calibrating the 14C time scale beyond 9000 years B.P. Nuclear Instruments and Methods in Physics Research B 52(3–4):461–8.CrossRefGoogle Scholar
Bard, E, Arnold, M, Fairbanks, RG, Hamelin, B. 1993. 230Th/234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35(1):191–9.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Arnold, M, Montaggioni, LF, Cabioch, G, Faure, G, Rougerie, F. 1996. Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature 382(6588):241–4.CrossRefGoogle Scholar
Bard, E, Arnold, M, Hamelin, B, Tisnérat-Laborde, N, Cabioch, G. 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40(3):1085–92.CrossRefGoogle Scholar
Bard, E, Ménot-Combes, G, Rostek, F. 2004a. Present status of radiocarbon calibration and comparison records based on Polynesian corals and Iberian Margin sediments. Radiocarbon 46(3):1189–202.CrossRefGoogle Scholar
Bard, E, Rostek, F, Ménot-Combes, G. 2004b. Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Research 61(2):204–14.CrossRefGoogle Scholar
Bard, E, Hamelin, B, Delanghe-Sabatier, D. 2010. Deglacial Meltwater Pulse 1B and Younger Dryas sea levels revisited with boreholes at Tahiti. Science 327(5970):1235–7.CrossRefGoogle ScholarPubMed
Butzin, M, Prange, M, Lohmann, G. 2005. Radiocarbon simulations for the glacial ocean: the effects of wind stress, Southern Ocean sea ice and Heinrich events. Earth and Planetary Science Letters 235(1–2):4561.CrossRefGoogle Scholar
Butzin, M, Prange, M, Lohmann, G. 2012. Readjustment of glacial radiocarbon chronology by self-consistent three-dimensional ocean circulation modeling. Earth and Planetary Science Letters 317–318:177–84.Google Scholar
Cabioch, G, Banks-Cutler, KA, Beck, WJ, Burr, GS, Corrège, T, Edwards, RL, Taylor, FW. 2003. Continuous reef growth during the last 23 cal kyr BP in a tectonically active zone (Vanuatu, South West Pacific). Quaternary Science Reviews 22(15–17):1771–86.CrossRefGoogle Scholar
Camoin, GF, Iryu, Y, Mclnroy D, and the Expedition 310 scientists. 2007a. Proceedings of the Integrated Ocean Drilling Program Management. Volume 310: College Station: IODP International, Inc.Google Scholar
Camoin, GF, Iryu, Y, Mclnroy D, and the Expedition 310 scientists. 2007b. IODP Expedition 310 reconstructs sea-Level, climatic and environmental changes in the South Pacific during the Last Deglaciation. Scientific Drilling 5:412.CrossRefGoogle Scholar
Capps, SB, Zender, CS. 2008. Observed and CAM3 GCM sea surface wind speed distributions: characterization, comparison, and bias reduction. Journal of Climate 21:6569–85.CrossRefGoogle Scholar
Cardinal, D, Hamelin, B, Bard, E, Patzold, J. 2001. Sr/Ca, U/Ca and δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chemical Geology 176(1–4):213–33.CrossRefGoogle Scholar
Chen, JH, Curran, HA, White, B, Wasserburg, GJ. 1991. Precise chronology of the last interglacial period: 234U-230Th data from fossil coral reefs in the Bahamas. Geological Society of America Bulletin 103(1):8297.2.3.CO;2>CrossRefGoogle Scholar
Cheng, H, Edwards, RL, Hoff, J, Gallup, CD, Richards, DA, Asmerom, Y. 2000. The half-lives of uranium-234 and thorium-230. Chemical Geology 169(1–2):1733.CrossRefGoogle Scholar
Condon, DJ, McLean, N, Noble, SR, Bowring, SA. 2010. Isotopic composition (238U/235U) of some commonly used uranium reference materials. Geochimica et Cosmochimica Acta 74(24):7127–43.CrossRefGoogle Scholar
Cottereau, E, Arnold, M, Moreau, C, Baqué, D, Bavay, D, Caffy, I, Comby, C, Dumoulin, J-P, Hain, S, Perron, M, Salomon, J, Setti, V. 2007. Artemis, the new 14C AMS at LMC14 in Saclay, France. Radiocarbon 49(2):291–9.CrossRefGoogle Scholar
Cowan, GA, Adler, HH. 1976. The variability of the natural abundance of 235U. Geochimica et Cosmochimica Acta 40(12):1487–90.CrossRefGoogle Scholar
Cutler, KB, Gray, SC, Burr, GS, Edwards, RL, Taylor, FW, Cabioch, G, Beck, JW, Cheng, H, Moore, J. 2004. Radiocarbon calibration to 50 kyr BP with paired 14C and 230Th dating of corals from Vanuatu and Papua New Guinea. Radiocarbon 46(3):1127–60.CrossRefGoogle Scholar
Delanghe, D, Bard, E, Hamelin, B. 2002. New TIMS constraints on the uranium-238 and uranium-234 in seawaters from the main ocean basins and the Mediterranean Sea. Marine Chemistry 80(1):7993.CrossRefGoogle Scholar
Delaygue, G, Stocker, TF, Joos, F, Plattner, GK. 2003. Simulation of atmospheric radiocarbon during abrupt oceanic circulation changes: trying to reconcile models and reconstructions. Quaternary Science Reviews 22(15–17):1647–58.CrossRefGoogle Scholar
Deschamps, P, Doucelance, R, Ghaleb, B, Michelot, JL. 2003. Further investigations on optimized tail correction and high-precision measurement of Uranium isotopic ratios using Multi-Collector ICP-MS. Chemical Geology 201(1–2):141–60.CrossRefGoogle Scholar
Deschamps, P, Durand, N, Bard, E, Hamelin, B, Camoin, G, Thomas, AL, Henderson, GM, Okuno, J, Yokoyama, Y. 2012. Ice sheet collapse and sea-level rise at the B⊘lling warming, 14,600 yr ago. Nature 483(7391):559–64.CrossRefGoogle Scholar
Druffel, ERM, Griffin, S, Hwang, J, Komada, T, Beaupré, SR, Druffel-Rodriguez, KC, Santos, GM, Southon, J. 2004. Variability of monthly radiocarbon during the 1760s in corals from the Galapagos Islands. Radiocarbon 46(2):627–32.CrossRefGoogle Scholar
Edwards, RL, Chen, JH, Ku, T-L, Wasserburg, GJ. 1987a. Precise timing of the Last Interglacial period from mass spectrometric determination of thorium-230 in corals. Science 236(4808):1547–53.CrossRefGoogle Scholar
Edwards, RL, Chen, JH, Wasserburg, GJ. 1987b. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Science Letters 81(2–3):175–92.Google Scholar
Edwards, RL, Beck, JW, Burr, GS, Donahue, DJ, Chappell, JMA, Bloom, AL, Druffel, ERM, Taylor, FW. 1993. A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260(5110):962–8.CrossRefGoogle ScholarPubMed
Esat, TM, Yokoyama, Y. 2006. Variability in the uranium isotopic composition of the oceans over glacial–interglacial timescales. Geochimica et Cosmochimica Acta 70(16):4140–50.CrossRefGoogle Scholar
Fairbanks, RG, Mortlock, RA, Chiu, T-C, Cao, L, Kaplan, A, Guilderson, TP, Fairbanks, TW, Bloom, AL, Grootes, PM, Nadeau, M-J. 2005. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals. Quaternary Science Reviews 24(16–17):1781–96.CrossRefGoogle Scholar
Felis, T, Merkel, U, Asami, R, Deschamps, P, Hathorne, EC, Kölling, M, Bard, E, Cabioch, G, Durand, N, Prangue, M, Schulz, M, Cahyarini, SY, Pfeiffer, M. 2012. Pronounced interannual variability in tropical South Pacific temperatures during Heinrich stadial 1. Nature Communications 3:965, doi:10.1038/ncomms1973.CrossRefGoogle ScholarPubMed
Frank, M, Schwarz, B, Baumann, S, Kubik, PW, Suter, M, Mangini, A. 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments. Earth and Planetary Science Letters 149(1–4):121–30.CrossRefGoogle Scholar
Friedrich, M, Lucke, A, Hanisch, S. 2004a. Late Glacial environmental and climatic changes from synchronized terrestrial archives of Central Europe: the Network PROSIMUL. PAGES News 12(2):27–9.CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kaiser, KF, Orcel, C, Küppers, M. 2004b. The 12,460-year Hohenheim oak and pine tree-ring chronology from central Europe—a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):1111–22.CrossRefGoogle Scholar
Goslar, T, Arnold, M, Bard, E, Kuc, T, Pazdur, MF, Ralska-Jasiewiczowa, M, Tisnerat, N, Rózanski, K, Walanus, A, Wicik, B, Wiêckowski, K. 1995. High concentration of atmospheric 14C during the Younger Dryas cold episode. Nature 377(6548):414–7.CrossRefGoogle Scholar
Hoffmann, DL, Beck, JW, Richards, DA, Smart, PL, Singarayer, JS, Ketchmark, T, Hawkesworth, CJ. 2010. Towards radiocarbon calibration beyond 28 ka using speleothems from the Bahamas. Earth and Planetary Science Letters 289(1–2):110.CrossRefGoogle Scholar
Hogg, AG, Turney, CSM, Palmer, JG, Fifield, LK, Baillie, MGL. 2006. The potential for extending IntCal04 using OIS-3 New Zealand sub-fossil kauri. PAGES News 14(3):11–2.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):2982–90.CrossRefGoogle Scholar
Hughen, KA, Overpeck, JT, Lehman, SJ, Kashgarian, M, Southon, JR, Peterson, LC. 1998. A new 14C calibration data set for the last deglaciation based on marine varves. Radiocarbon 40(1):483–94.Google Scholar
Hughen, KA, Southon, JR, Lehman, SJ, Overpeck, JT. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290(5498):1951–4.CrossRefGoogle ScholarPubMed
Hughen, KA, Southon, JR, Bertrand, CJH, Frantz, B, Zermeño, P. 2004a. Cariaco Basin calibration update: revisions to calendar and 14C chronologies for core PL07-58PC. Radiocarbon 46(3):1161–87.CrossRefGoogle Scholar
Hughen, KA, Lehman, S, Southon, J, Overpeck, J, Marchal, O, Herring, C, Turnbull, J. 2004b. 14C activity and global carbon cycle changes over the past 50,000 years. Science 303(5655):202–7.CrossRefGoogle Scholar
Hughen, KA, Baillie, MGL, Bard, E, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, PJ, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004c. Marine04 marine radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1059–86.CrossRefGoogle Scholar
Hughen, K, Southon, J, Lehman, S, Bertrand, C, Turnbull, J. 2006. Marine-derived 14C calibration and activity record for the past 50,000 years updated from the Cariaco Basin Quaternary Science Reviews 25(23–24):3216–27.CrossRefGoogle Scholar
Keigwin, LD, Lehman, SJ. 1994. Deep circulation change linked to HEINRICH event 1 and Younger Dryas in a middepth North Atlantic core. Paleoceanography 9(2):185–94.CrossRefGoogle Scholar
Kitagawa, H, van der Plicht, J. 2000. Atmospheric radiocarbon calibration beyond 11,900 cal BP from Lake Suigetsu laminated sediments. Radiocarbon 42(3):369–80.CrossRefGoogle Scholar
Köhler, P, Muscheler, R, Fischer, H. 2006. A model-based interpretation of low-frequency changes in the carbon cycle during the last 120,000 years and its implications for the reconstruction of atmospheric Δ14C. Geochemistry, Geophysics, Geosystems 7:Q11N06, doi:10.1029/2005GC001228.CrossRefGoogle Scholar
Laj, C, Kissel, C, Mazaud, A, Michel, E, Muscheler, R, Beer, J. 2002. Geomagnetic field intensity, North Atlantic Deep Water circulation and atmospheric Δ14C during the last 50 kyr. Earth and Planetary Science Letters 200(1–2):177–90.CrossRefGoogle Scholar
Leduc, G, Vidal, L, Tachikawa, K, Bard, E. 2009. ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific? Quaternary Research 72(1):123–31.CrossRefGoogle Scholar
Lourantou, A, Lavric, JV, Köhler, P, Barnola, J-M, Michel, E, Paillard, D, Raynaud, D, Chappellaz, D. 2010. A detailed carbon isotopic constraint on the causes of the deglacial CO2 increase. Global Biogeochemical Cycles 24: GB2015, doi::10.1029/2009GB003545.Google Scholar
Mason, AJ, Henderson, GM. 2010. Correction of multi-collector-ICP-MS instrumental biases in high-precision uranium-thorium chronology. International Journal of Mass Spectrometry 295:2635.CrossRefGoogle Scholar
McGee, D, Broecker, WS, Winckler, G. 2010. Gustiness: the driver of glacial dustiness? Quaternary Science Reviews 29(17–18):2340–50.CrossRefGoogle Scholar
McManus, JF, Francois, R, Gherardi, JM, Keigwin, LD, Brown-Leger, S. 2004. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–7.CrossRefGoogle ScholarPubMed
Min, GR, Edwards, RL, Taylor, FW, Recy, J, Gallup, CD, Beck, JW. 1995. Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochimica et Cosmochimica Acta 59(10):2025–42.Google Scholar
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.CrossRefGoogle Scholar
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1:263–7.CrossRefGoogle Scholar
Palmer, J, Lorrey, A, Turney, CSM, Hogg, A, Baillie, M, Fifield, K, Ogden, J. 2006. Extension of New Zealand kauri (Agathis australis) tree-ring chronologies into Oxygen Isotope Stage (OIS) 3. Journal of Quaternary Science 21(7):779–87.CrossRefGoogle Scholar
Paterne, M, Ayliffe, LK, Arnold, M, Cabioch, G, Tisnérat-Laborde, N, Hatté, C, Douville, E, Bard, E. 2004. Paired 14C and 230Th/230U dating of surface corals from the Marquesas and Vanuatu (sub-equatorial Pacific) in the 3000 to 15,000 cal yr interval. Radiocarbon 46(2):551–66.CrossRefGoogle Scholar
Piotrowski, AM, Goldstein, SL, Hemming, SR, Fairbanks, RG. 2005. Temporal relationship of carbon cycling and ocean circulation at glacial boundaries. Science 307(5717):1933–8.CrossRefGoogle Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, B, Clausen, HB, Siggaard-Andersen, M-L, Johnsen, SJ, Larsen, LB, Dahl-Jensen, D, Bigler, M, Röthlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, M, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111: D06102, doi:: 10.1029/2005JD006079.CrossRefGoogle Scholar
Rea, DK. 1994. The paleoclimatic record provided by eolian dust deposition in the deep-sea the geologic history of wind. Reviews of Geophysics 32(2):159–95.CrossRefGoogle Scholar
Reimer, PJ, Hughen, KA, Guilderson, TP, McCormac, G, Baillie, MGL, Bard, E, Barratt, P, Beck, JW, Buck, CE, Damon, PE, Friedrich, M, Kromer, B, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, van der Plicht, J. 2002. Preliminary report of the first workshop of the IntCal04 radiocarbon calibration/comparison working group. Radiocarbon 44(3):653–61.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Bertrand, CJH, Blackwell, PG, Buck, CE, Burr, GS, Cutler, KB, Damon, PE, Edwards, RL, Fairbanks, RG, Friedrich, M, Guilderson, TP, Hogg, AG, Hughen, KA, Kromer, B, McCormac, G, Manning, S, Bronk Ramsey, C, Reimer, RW, Remmele, S, Southon, JR, Stuiver, M, Talamo, S, Taylor, FW, van der Plicht, J, Weyhenmeyer, CE. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–58.CrossRefGoogle Scholar
Reimer, PJ, Baillie, MGL, McCormac, G, Reimer, RW, Bard, E, Beck, JW, Blackwell, PG, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Guilderson, TP, Manning, S, Guilderson, TP, Southon, JR, Hogg, AG, Stuiver, M, Hughen, KA, van der Plicht, J, Kromer, B, van der Plicht, J, Manning, S, Weyhenmeyer, CE. 2006. Comment on “Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals” by R.G Fairbanks et al. (Quaternary Science Reviews 24 (2005) 1781–1796) and “Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals” by T.-C. Chin et al. (Quaternary Science Reviews 24 (2005) 1797–1808). Quaternary Science Reviews 25(7–8):855–62.Google Scholar
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.CrossRefGoogle Scholar
Robinson, LF, Belshaw, NS, Henderson, GM. 2004. U and Th concentrations and isotope ratios in modern carbonates and waters from the Bahamas. Geochimica et Cosmochimica Acta 68(8):1777–89.CrossRefGoogle Scholar
Schaub, M, Buntgen, U, Kaiser, KF, Kromer, B, Talamo, S, Andersen, KK, Rasmussen, SO. 2008a. Lateglacial environmental variability from Swiss tree rings. Quaternary Science Reviews 27(1–2):2941.CrossRefGoogle Scholar
Schaub, M, Kaiser, KF, Frank, DC, Buntgen, U, Kromer, B, Talamo, S. 2008b. Environmental change during the Aller⊘d and Younger Dryas reconstructed from Swiss tree-ring data. Boreas 37(1):7486.CrossRefGoogle Scholar
Schmitt, J, Schneider, R, Elsig, J, Leuenberger, D, Lourantou, A, Chappellaz, J, Köhler, P, Joos, F, Stocker, TF, Leuenberger, M, Fischer, H. 2012. Carbon isotope constraints on the deglacial CO2 rise from ice cores. Science 336(6082):711–4.CrossRefGoogle Scholar
Seard, C, Camoin, G, Yokoyama, Y, Matsuzaki, H, Durand, N, Bard, E, Sepulcre, S, Deschamps, P. 2011. Microbialite development patterns in the last deglacial reefs from Tahiti (French Polynesia; IODP Expedition #310): implications on reef framework architecture. Marine Geology 279(1–4):6386.CrossRefGoogle Scholar
Sepulcre, S, Durand, N, Bard, E. 2009. Mineralogical determination of reef and periplatform carbonates: calibration and implications for paleoceanography and radiochronology. Global and Planetary Change 66:19.CrossRefGoogle Scholar
Shackleton, NJ, Fairbanks, RG, Chiu, T-C, Parrenin, F. 2004. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for 14C. Quaternary Science Reviews 23(14–15):1513–22.CrossRefGoogle Scholar
Southon, J, Noronha, AL, Cheng, H, Edwards, RL, Wang, Y. 2012. A high-resolution record of atmospheric 14C based Hulu Cave speleothem H82. Quaternary Science Reviews 33:3241.CrossRefGoogle Scholar
Stambaugh, MC, Guyette, RP. 2009. Progress in constructing a long oak chronology from the central United States. Tree-Ring Research 65(2):147–56.CrossRefGoogle Scholar
Stirling, CH, Esat, TM, McCulloch, MT, Lambeck, K. 1995. High-precision U-series dating of corals from Western Australia and implications for the timing and duration of the Last Interglacial. Earth and Planetary Science Letters 135(1–4):115–30.CrossRefGoogle Scholar
Stirling, CH, Andersen, MB, Potter, EK, Halliday, AN. 2007. Low-temperature isotopic fractionation of uranium. Earth and Planetary Science Letters 264(1–2):208–25.CrossRefGoogle Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.CrossRefGoogle Scholar
Stuiver, M, Reimer, PJ, Bard, E, Beck, JW, Burr, GS, Hughen, KA, Kromer, B, McCormac, G, van der Plicht, J, Spurk, M. 1998. INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40(3):1041–83.CrossRefGoogle Scholar
Thomas, AL, Henderson, GM, Deschamps, P, Yokoyama, Y, Mason, AJ, Bard, E, Hamelin, B, Durand, N, Camoin, G. 2009. Penultimate deglacial sea-level timing from uranium/thorium dating of Tahitian corals. Science 324(5931):1186–9.CrossRefGoogle ScholarPubMed
Vogel, JS, Southon, JR, Nelson, DE, Brown, TA. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B 5(2):289–93.CrossRefGoogle Scholar
Wang, YJ, Cheng, H, Edwards, RL, An, ZS, Wu, JY, Shen, C-C, Dorale, JA. 2001. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294(5550):2345–8.CrossRefGoogle ScholarPubMed
Weyer, S, Anbar, AD, Gerdes, A, Gordon, GW, Algeo, TJ, Boyle, EA. 2008. Natural fractionation of 238U/235U. Geochimica et Cosmochimica Acta 72(2):345–59.CrossRefGoogle Scholar
Yokoyama, Y, Esat, TM. 2004. Long term variations of uranium isotopes and radiocarbon in the surface seawater recorded in corals. In: Shiyomi, M, Kawahata, H, Koizumi, A, Tsuda, A, Awaya, Y, editors. Global Environmental Change in the Ocean and on Land. Tokyo: TERRAPUB. p 279309.Google Scholar
Yokoyama, Y, Esat, TM, Lambeck, K, Fifield, LK. 2000. Last ice age millennial scale climate changes recorded in Huon Peninsula corals. Radiocarbon 42(3):383401.CrossRefGoogle Scholar
Yokoyama, Y, Miyairi, Y, Matsuzaki, H, Tsunomori, F. 2007. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation. Nuclear Instruments and Methods in Physics Research B 259(1):330–4.CrossRefGoogle Scholar
Zhu, ZR, Wyrwoll, K-H, Collins, LB, Chen, JH, Wasserburg, GJ, Eisenhauer, A. 1993. High-precision U-series dating of Last Interglacial events by mass spectrometry: Houtman Abrolhos Islands, western Australia. Earth and Planetary Science Letters 118(1–4):281–93.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 189 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 14th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Comparison of 14C and U-Th Ages in Corals from IODP #310 Cores Offshore Tahiti
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Comparison of 14C and U-Th Ages in Corals from IODP #310 Cores Offshore Tahiti
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Comparison of 14C and U-Th Ages in Corals from IODP #310 Cores Offshore Tahiti
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *