Skip to main content Accessibility help
×
Home

Characterization of Different Chemical Procedures for 14C Dating of Buried, Cremated, and Modern Bone Samples at Circe

  • Isabella Passariello (a1) (a2), Pasquale Simone (a1) (a2), Joseph Tandoh (a1) (a2), Fabio Marzaioli (a1) (a2), Manuela Capano (a2) (a3), Nicola De Cesare (a2) (a4) and Filippo Terrasi (a1) (a2)...

Abstract

Bone chemical treatment for radiocarbon dating has drawn the attention of different laboratories because dates of bones and charcoals found in the same layer often disagree. Excluding diet-related reservoir effects, this observation is likely due to a nonoptimized procedure of contaminant removal from the extracted collagen. In this study, systematic work on the bone chemical treatment was performed with the aim to investigate the effect of each known procedure (i.e. AAA, GEL, and ULTR) on the collagen used for 14C dating. Isolation and purification of lipids from animal tissues were performed to estimate eventual offsets induced by the applied methods, by comparing the 14C ages of lipids with those of collagen. Moreover, cremated bones were treated for the first time at CIRCE. Measured 14C isotopic ratios on these samples were used to evaluate the accuracy of the applied procedure by comparing against the results for charcoals found in the same archaeological context as the bones.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Characterization of Different Chemical Procedures for 14C Dating of Buried, Cremated, and Modern Bone Samples at Circe
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Characterization of Different Chemical Procedures for 14C Dating of Buried, Cremated, and Modern Bone Samples at Circe
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Characterization of Different Chemical Procedures for 14C Dating of Buried, Cremated, and Modern Bone Samples at Circe
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Email: Isabella.passariello@unina2.it

References

Hide All
Arslanov, KA, Svezhentsev, YS. 1993. An improved method for radiocarbon dating fossil bones. Radiocarbon 35(3):387–91.
Brock, F, Bronk Ramsey, C, Higham, TFG. 2007. Quality assurance of ultrafiltered bone dating. Radiocarbon 49(2):187–92.
Bronk Ramsey, C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51(1):337–60.
Bronk Ramsey, C, Higham, T, Bowles, A, Hedges, R. 2004. Improvements to the pretreatment of bone at Oxford. Radiocarbon 46(1):155–63.
Brown, TA, Nelson, DE, Vogel, JS, Southon, JR. 1988. Improved collagen extraction method by modified Longin method. Radiocarbon 30(2):171–7.
Colombo, D, Stanislao, I. 2011. Gli etruschi e la Campania settentrionale. In: Atti del XXVI Convegno di studi etruschi ed italici. Serra Editore. In press.
Folch, J, Lees, M, Sloane Stanley, GH. 1957. A simple method for the isolation and purification of the total lipides from animal tissues. Journal of Biological Chemistry 226:497.
Hüls, CM, Grootes, PM, Nadeau, M-J. 2007. How clean is ultrafiltration cleaning of bone collagen? Radiocarbon 49(2):193200.
Hüls, CM, Grootes, PM, Nadeau, M-J. 2009. Ultrafiltration: boon or bane? Radiocarbon 51(2):613–25.
Hüls, CM, Erlenkeuser, H, Nadeau, M-J, Grootes, PM, Andersen, N. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2–3):587–99.
Lanting, JN, Aerts-Bijma, AT, van der Plicht, J. 2001. Dating of cremated bones. Radiocarbon 43(2A):249–54.
Longin, R. 1971. New method of collagen extraction for radiocarbon dating. Nature 230(5291):241–2.
Marzaioli, F, Borriello, G, Passariello, I, Lubritto, C, De Cesare, N, D'Onofrio, A, Terrasi, F. 2008. Zinc reduction as an alternative method for AMS radiocarbon dating: process optimization at CIRCE. Radiocarbon 50(1):139–49.
Marzaioli, F, Fiumano, V, Capano, M, Passariello, I, Terrasi, F. 2011. Forensic applications of 14C at CIRCE. Nuclear Instruments and Methods in Physics Research B 269(24):3171–5.
May, S. 1998. The Archaeology of Human Bones. London: Routledge.
Minami, M, Muto, H, Nakamura, T. 2004. Chemical techniques to extract organic fractions from fossil bones for accurate 14C dating. Nuclear Instruments and Methods in Physics Research B 223–224:302–7.
Mook, WG, Streurman, HJ. 1983. Physical and chemical aspects of radiocarbon dating. PACT 8:3153.
Naysmith, P, Scott, EM, Cook, GT, Heinemeier, J, van der Plicht, J, Van Strydonk, M, Bronk Ramsey, C, Grootes, PM, Freeman, PSHT. 2007. A cremated bone intercomparison study. Radiocarbon (49):403–8.
Passariello, I, Marzaioli, F, Lubritto, C, Rubino, M, D'Onofrio, A, De Cesare, N, Borriello, G, Casa, G, Palmieri, A, Rogalla, D, Sabbarese, C, Terrasi, F. 2007. Radiocarbon sample preparation at the CIRCE AMS Laboratory in Caserta, Italy. Radiocarbon 49(2):225–32.
Reimer, PJ, Baillie, MGL, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Burr, GS, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Hajdas, I, Heaton, TJ, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, McCormac, FG, Manning, SW, Reimer, RW, Richards, DA, Southon, JR, Talamo, S, Turney, CSM, van der Plicht, J, Weyhenmeyer, CE. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51(4):1111–50.
Scott, E, Cook, G, Naysmith, P. 2010. The Fifth International Radiocarbon Intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 53(2–3):859–65.
Shipman, P, Foster, G, Schoeninger, M. 1984. Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science 11(4):307–25.
Smith, EL, Hill, RL, Lehman, IR, Lefkowitz, RJ, Handler, P, White, A. 1983. Principles of Biochemistry: Mammalian Biochemistry. 7th edition. New York: McGraw-Hill Book Co.
Stafford, TW, Jull, AJT, Brendell, K, Duhamel, RC, Donahue, D. 1987. Study of bone radiocarbon dating at the University of Arizona NSF Accelerator facility for radioisotope analysis. Radiocarbon 29(1):2444.
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355–63.
Terrasi, F, De Cesare, N, D'Onofrio, A, Lubritto, C, Marzaioli, F, Passariello, I, Rogalla, D, Sabbarese, C, Borriello, G, Casa, C, Palmieri, A. 2008. High precision 14C AMS at CIRCE. Nuclear Instruments and Methods in Physics Research B 266(10):2221–4.
Van Strydonck, M, Boudin, M, Hoefens, M, De Mulder, G. 2005. 14C-dating of cremated bones—Why does it work? Lunula 13:310.
Van Strydonck, M, Boudin, M, De Mulder, G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2–3):578–86.
Wild, EM, Arlamovsky, KA, Golser, R, Kutschera, W, Priller, A, Puchegger, S, Rom, W, Steier, P, Vycudilik, W. 2000. 14C dating with the bomb peak: an application to forensic medicine. Nuclear Instruments and Methods in Physics Research B 172(1–4):944–50.

Related content

Powered by UNSILO

Characterization of Different Chemical Procedures for 14C Dating of Buried, Cremated, and Modern Bone Samples at Circe

  • Isabella Passariello (a1) (a2), Pasquale Simone (a1) (a2), Joseph Tandoh (a1) (a2), Fabio Marzaioli (a1) (a2), Manuela Capano (a2) (a3), Nicola De Cesare (a2) (a4) and Filippo Terrasi (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.