Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-nbrzn Total loading time: 0.269 Render date: 2021-04-17T01:45:54.594Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Changes of 14C Concentration in Modern Trees from Upper Silesia Region, Poland

Published online by Cambridge University Press:  18 July 2016

Andrzej Z Rakowski
Affiliation:
Silesian University of Technology, Institute of Physics, Radiocarbon Laboratory, ul. Krzywoustego 2,44-100 Gliwice, Poland
Sławomira Pawełczyk
Affiliation:
Silesian University of Technology, Institute of Physics, Radiocarbon Laboratory, ul. Krzywoustego 2,44-100 Gliwice, Poland
Anna Pazdur
Affiliation:
Silesian University of Technology, Institute of Physics, Radiocarbon Laboratory, ul. Krzywoustego 2,44-100 Gliwice, Poland
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

Radiocarbon concentration measurements in tree rings from Upper Silesia indicate significantly lower 14C concentration as compared to the concentrations occurring in “clean air” areas. This phenomenon is known as the Suess effect and is caused by contamination with inactive carbon that originates from fossil fuels combustion. This effect is observed in large urban and industrial areas. Samples for the measurements presented in the paper were collected in some of the largest cities in Upper Silesia: Gliwice, Ruda Śląska, and Chorzów. The samples were annual tree rings (Populus nigra, Pinus silvestris) covering years 1965–1992 and the atmospheric CO2 collected weekly between December 1994 and December 1995.

Type
I. Our ‘Dry’ Environment: Above Sea Level
Copyright
Copyright © 2001 by the Arizona Board of Regents on behalf of the University of Arizona 

References

Awsiuk, R, Pazdur, MF. 1986. Regional Suess effect in Upper Silesia urban area. Radiocarbon 28(2A):655–60.CrossRefGoogle Scholar
Florkowski, T, Kuc, T. 1979. Carbon isotopes and sulphur content as indicators of atmospheric pollution from burning fossil fuels. Environment International 2: 431–5.CrossRefGoogle Scholar
Kuc, T, Zimnoch, M. 1998. Changes of the CO2 sources and sinks in polluted urban area (Southern Poland) over last decades, derived from the carbon isotope composition. Radiocarbon 40(1):417–23.Google Scholar
Levin, I, Suchard, J, Kromer, B, Munnich, KO. 1989. The continental European Suess effect. Radiocarbon 31(3):431–40.CrossRefGoogle Scholar
Levin, I, Graul, R, Trivett, NBA. 1995. Long-term observation of atmospheric CO2 and carbon isotopes at continental sites in Germany. Tellus 47B:2334.CrossRefGoogle Scholar
Levin, I, Kromer, B. 1997. Twenty years of high-precision atmospheric 14CO2 observations at Schauinsland station, Germany. Radiocarbon 39(2):205–18.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere, 1963–1980. Journal of Geophysical Research 88:3621–42.Google Scholar
Oeschger, H, Siegenthaler, U, Gugelmann, A. 1975. A box diffusion model to study the carbon dioxide exchange in nature. Tellus 27:168–92.CrossRefGoogle Scholar
Pawlyta, J, Rakowski, AZ, Pazdur, A, Miller, BF, Harknes, DD, 1998. Commissioning of a Quantulus 1220 liquid scintillation beta spectrometer for the measurement of C-14 and H-3 at natural abundance level. Radiocarbon 40(1):201–8.Google Scholar
Pazdur, A, Pazdur, M F. 1986. Aparatura pomiarowa Labratorium 14C w Gliwicach. Doswiadczenia konstrukcyjne i eksploatacyjne (The measuring equipment of the Gliwice Radiocarbon Laboratory. Experience gathered in the construction and exploitation). Zeszyty Naukowe Politechniki Slaskiej, Seria Matematyka-Fizyka. Zeszyt 46-Geochronometria 1:5569.Google Scholar
Siegenthaler, U, Oeschger, H. 1987. Biospheric CO2 emission during the past 200 years reconstructed by decon-volution of ice core data. Tellus 39:140–54.Google Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122:415–17.CrossRefGoogle Scholar
Usdowski, E., Hoefs, J. 1986. 13C/12C partitioning and kinetics of CO2 absorption by hydroxide buffer solutions. Earth and Planetary Science Letters 80:130–4.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 100 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Changes of 14C Concentration in Modern Trees from Upper Silesia Region, Poland
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Changes of 14C Concentration in Modern Trees from Upper Silesia Region, Poland
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Changes of 14C Concentration in Modern Trees from Upper Silesia Region, Poland
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *