Skip to main content Accessibility help

Anomalous 14C Enrichments in the Eastern UK Coastal Environment

  • Graham K P Muir (a1), Gordon T Cook (a1), Angus B MacKenzie (a1), Gillian MacKinnon (a1) and Pauline Gulliver (a2)...


During the period from 1995 to 2011, radiocarbon measurements from the coast around Hartlepool in NE England have revealed anomalous enrichments in seawater, sediment, and marine biota. These cannot be explained on the basis of atomic weapons testing or authorized nuclear industry discharges, including those from the nearby advanced gas-cooled reactor. Enhanced 14C-specific activities have also been observed since 2005 in biota during routine monitoring at Hartlepool by the Food Standards Agency, but are reported as “likely” originating from a “nearby non-nuclear source.” Studies undertaken in Hartlepool and Teesmouth during 2005 and 2011 suggest that the 14C discharges are in the vicinity of Greatham Creek, with activity levels in biota analogous to those measured at Sellafield, which discharges TBq activities of 14C per annum. However, if the discharges are into Greatham Creek or even the River Tees, it is proposed that they would be much smaller than those at Sellafield and the high specific activities would be due to much smaller dilution factors. The discharge form of the 14C remains unclear. The activity patterns in biota are similar to those at Sellafield, suggesting that initial inputs are dissolved inorganic carbon (DI14C). However, the mussel/seaweed ratios are more akin to those found around Amersham International, Cardiff, which is known to discharge 14C in an organic form. 14C analysis of a sediment core from Seal Sands demonstrated excess 14C to the base of the core (43–44 cm). 210Pb dating of the core (0–32 cm) produced an accumulation rate of 0.7 g cm−2 yr−1, implying that 14C discharges have occurred from the 1960s until the present day.


Corresponding author

2 Corresponding author. Email:


Hide All
Ahad, JME, Ganeshram, R, Spencer, RGM, Uher, G, Gulliver, P, Bryant, CL. 2006. Evidence for anthropogenic 14C-enrichment in estuarine waters adjacent to the North Sea. Geophysical Research Letters 33:L08608, doi:10.1029/2006GL025991.
Appleby, PG, Oldfield, F. 1992. Application of lead-210 to sedimentation studies. In: Ivanovich, M, Harmon, RS, editors. Uranium Series Disequilibrium: Applications to Earth, Marine and Environmental Sciences. Oxford: Clarendon Press. p 731–78.
Begg, FH, Cook, GT, Baxter, MS, Scott, EM, McCartney, M. 1992. Anthropogenic radiocarbon in the eastern Irish Sea and Scottish coastal waters. Radiocarbon 34(3):704–16.
Cook, GT, Begg, FH, Naysmith, P, Scott, EM, McCartney, M. 1995. Anthropogenic 14C marine geochemistry in the vicinity of a nuclear fuel reprocessing plant. Radiocarbon 37(2):459–67.
Cook, GT, MacKenzie, AB, Naysmith, P, Anderson, R. 1998. Natural and anthropogenic 14C in the UK coastal marine environment. Journal of Environmental Radioactivity 40(1):89111.
Cook, GT, MacKenzie, AB, Muir, GKP, Mackie, G, Gulliver, P. 2004. Sellafield-derived anthropogenic 14C in the marine intertidal environment of the NE Irish Sea. Radiocarbon 46(2):877–83.
Davidson, NC, Evans, PR. 1986. The role and potential of man-made and man modified wetlands in the enhancement of the survival of overwintering shore-birds. Colonial Waterbirds 9:176–88.
Freeman, SPHT, Dougans, AB, McHargue, L, Wilcken, KM, Xu, S. 2008. Performance of the new single stage accelerator mass spectrometer at the SUERC. Nuclear Instruments and Methods in Physics Research B 266(10):2225–8.
Gillikin, DP, De Ridder, F, Ulens, H, Elskens, M, Keppens, E, Baeyens, W, Dehairs, F. 2005. Assessing the reproducibility and reliability of estuarine bivalve shells (Saxidomus giganteus) for sea surface temperature reconstruction: implications for paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology 228(1–2):7085.
Gillikin, DP, Dehairs, F, Lorrain, A, Steenmans, D, Baeyens, W, André, L. 2006. Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochimica et Cosmochimica Acta 70(2):395407.
Gillikin, DP, Lorrain, A, Meng, L, Dehairs, F. 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta 71(12):2936–46.
Gulliver, P, Cook, GT, MacKenzie, AB, Naysmith, P, Anderson, R. 2004. Sources of anthropogenic 14C to the North Sea. Radiocarbon 46(2):869–76.
Lalli, CM, Parsons, TR. 1993. Biological Oceanography: An Introduction. Oxford: Pergamon Press. p 5279.
MAFF (Ministry of Agriculture, Fisheries and Food). 1994. Radioactivity in the surface and coastal waters of the British Isles, 1993. Aquatic Environment Monitoring Report. No. 42. Lowestoft: MAFF.
MAFF (Ministry of Agriculture, Fisheries and Food). 1995. Radioactivity in the surface and coastal waters of the British Isles, 1994. Aquatic Environment Monitoring Report. No. 45. Lowestoft: MAFF.
McConnaughey, TA, Burdett, J, Whelan, JF, Paull, CK. 1997. Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61(3):611–22.
Mook, WG, van der Plicht, J. 1999. Reporting 14C activities and concentrations. Radiocarbon 41(3):227–39.
Naysmith, P, Cook, GT, Freeman, SPHT, Scott, EM, Anderson, R, Xu, S, Dunbar, E, Muir, GKP, Dougans, A, Wilcken, K, Schnabel, C, Russell, N, Ascough, PL, Maden, C. 2010. 14C AMS measurements at SUERC: improving QA data from the 5MV tandem AMS and 250kV SSAMS. Radiocarbon 52(2–3):263–71.
Plater, AJ, Appleby, PG. 2004. Tidal sedimentation in the Tees estuary during the 20th century: radionuclide and magnetic evidence of pollution and sedimentary response. Estuarine, Coastal and Shelf Science 60(2):179–92.
Public Health England. 2014. Radiological Impact of Routine Discharges from UK Civil Nuclear Licensed Sites during the 2000s.
Radioactivity in Food and the Environment (RIFE). 1995–2014. Radioactivity in Food and the Environment, Food Standards Agency. RIFE reports 1–19.
Slota, P Jr, Jull, AJT, Linick, TW, Toolin, LJ. 1987. Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29(2):303–6.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

  • ISSN: 0033-8222
  • EISSN: 1945-5755
  • URL: /core/journals/radiocarbon
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed