Skip to main content Accessibility help
Hostname: page-component-768ffcd9cc-mqrwx Total loading time: 0.403 Render date: 2022-12-02T04:01:59.445Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents


Published online by Cambridge University Press:  20 October 2021

Jocelyn C Turnbull*
Rafter Radiocarbon Laboratory, GNS Science, 30 Gracefield Rd, Lower Hutt, New Zealand CIRES, University of Colorado at Boulder, Boulder, CO, USA
Dave C Lowe
LOWENZ, Wellington, New Zealand
Martin R Manning
Victoria University of Wellington, Wellington, NZ
Rodger Sparks
Rafter Radiocarbon Laboratory, GNS Science, 30 Gracefield Rd, Lower Hutt, New Zealand
*Corresponding author. Email:


Direct atmospheric 14CO2 measurements began in New Zealand in 1954, initially to improve 14C as a dating tool, but quickly evolving into a method for understanding the carbon cycle. These early 14CO2 measurements immediately demonstrated the existence of an “Atom Bomb Effect,” as well as an “Industrial Effect.” These two gigantic tracer experiments have been utilized via 14CO2 measurements over the years to produce a wealth of knowledge in multiple research fields including atmospheric carbon cycle research, oceanography, soil science, and aging of post-bomb materials.

Review Article
© The Author(s), 2021. Published by Cambridge University Press for the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Anderson, E, Libby, WF, Weinhouse, S, Reid, A, Kishenaum, A, Grosse, A. 1947. Radiocarbon from cosmic radiation. Science 105(2735):576577.CrossRefGoogle ScholarPubMed
Arrhenius, S. 1896. On the influence of carbonic acid in the air upon the temperature of the ground. Philosophical Magazine and Journal of Science 41:237276.CrossRefGoogle Scholar
Basu, S, Lehman, SJ, Miller, JB, Andrews, AE, Sweeney, C, Gurney, KR, Xu, X, Southon, J, Tans, PP. 2020. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2 . Proceedings of the National Academy of Sciences 117(24):1330013307.CrossRefGoogle ScholarPubMed
Berger, R, Jackson, TB, Michael, R, Suess, HE. 1987. Radiocarbon content of tropospheric CO2 at China Lake, California 1977–1983. Radiocarbon 29(1):1823.CrossRefGoogle Scholar
Broecker, WS, Peng, T-H, Ostlund, H, Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. Journal of Geophysical Research C4(90):69536970.CrossRefGoogle Scholar
Caldeira, K, Rau, GH, Duffy, PB. 1998. Predicted net efflux of radiocarbon from the ocean and increase in atmospheric radiocarbon content. Geophysical Research Letters 25(20):38113814.CrossRefGoogle Scholar
Cerling, TE, Barnette, JE, Chesson, LA, Douglas-Hamilton, I, Gobush, KS, Uno, KT, Wasser, SK, Xu, X. 2016. Radiocarbon dating of seized ivory confirms rapid decline in African elephant populations and provides insight into illegal trade. Proceedings of the National Academy of Sciences of the United States of America.CrossRefGoogle Scholar
Craig, H. 1957. Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochimica Et Cosmochimica Acta 12:133149.CrossRefGoogle Scholar
Cui, X, Newman, S, Xu, X, Andrews, AE, Miller, J, Lehman, S, Jeong, S, Zhang, J, Priest, C, Campos-Pineda, M et al. 2019. Atmospheric observation-based estimation of fossil fuel CO2 emissions from regions of central and southern California. The Science of the Total Environment 664:381391.CrossRefGoogle ScholarPubMed
Currie, KI, Brailsford, G, Nichol, S, Gomez, A, Sparks, R, Lassey, KR, Riedel, K. 2011. Tropospheric 14CO2 at Wellington, New Zealand: the world’s longest record. Biogeochemistry 104(1–3):522.CrossRefGoogle Scholar
de Vries, H, Barendsen, G. 1953. Radiocarbon dating by a proportional counter filled with carbon dioxide. Physica XIX:9871003.CrossRefGoogle Scholar
Ding, P, Shen, C, Yi, W, Wang, N, Ding, X, Fu, D, Liu, K. 2013. Fossil-fuel-derived CO2 contribution to the urban atmosphere in Guangzhou, South China, estimated by 14CO2 observation, 2010-2011. Radiocarbon 55(2–3):791803.CrossRefGoogle Scholar
Djuricin, S, Pataki, DE, Xu, X. 2010. A comparison of tracer methods for quantifying CO2 sources in an urban region. Journal of Geophysical Research 115(D11).CrossRefGoogle Scholar
Eglinton, TI, Galy, VV, Hemingway, JD, Feng, X, Bao, H, Blattmann, TM, Dickens, AF, Gies, H, Giosan, L, Haghipour, N et al. 2021. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences 118(8).CrossRefGoogle ScholarPubMed
Fergusson, G, Rafter, TA. 1953. New Zealand C14 age measurements. New Zealand Journal of Science and Technology 127–128.Google Scholar
Graven, HD. 2015. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proceedings of the National Academy of Sciences 112(31):95429545.CrossRefGoogle ScholarPubMed
Graven, HD, Gruber, N, Key, R, Khatiwala, S, Giraud, X. 2012a. Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. Journal of Geophysical Research 117(C10).CrossRefGoogle Scholar
Graven, HD, Guilderson, TP, Keeling, RF. 2012b. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research 117(D2).CrossRefGoogle Scholar
Grootes, P, van der Plicht, H. 2021. Hessel de Vries: radiocarbon pioneer from Groningen. Radiocarbon. doi: 10.1017/RDC.2021.63.CrossRefGoogle Scholar
Heaton, TJ, Köhler, P, Butzin, M, Bard, E, Reimer, RW, Austin, WEN, Bronk Ramsey, C, Grootes, PM, Hughen, KA, Kromer, B et al. 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62(4):142.CrossRefGoogle Scholar
Hesshaimer, V, Heimann, M, Levin, I. 1994. Radiocarbon evidence for a smaller oceanic carbon dioxide sink than previously believed. Nature 370:201203.CrossRefGoogle Scholar
Hesshaimer, V, Levin, I. 2000. Revision of the stratospheric bomb 14CO2 inventory. Journal of Geophysical Research 105(D9):1164111658.CrossRefGoogle Scholar
Hogg, A, Lowe, DJ, Palmer, J, Boswijk, G, Ramsey, CB. 2011. Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand Kauri 14C calibration data set. The Holocene 22(4):439449.CrossRefGoogle Scholar
Hogg, AG, Wilson, CJN, Lowe, DJ, Turney, CSM, White, P, Lorrey, AM, Manning, SW, Palmer, JG, Bury, S, Brown, J et al. 2019. Wiggle-match radiocarbon dating of the Taupo eruption. Nat Commun. 10(1):4669.CrossRefGoogle ScholarPubMed
Holdaway, RN, Duffy, B, Kennedy, B. 2018. Evidence for magmatic carbon bias in 14C dating of the Taupo and other major eruptions. Nat Commun. 9(1):4110.CrossRefGoogle ScholarPubMed
Hsueh, DY, Krakauer, NY, Randerson, JT, Xu, X, Trumbore, SE, Southon, JR. 2007. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters 34(2):L02816.CrossRefGoogle Scholar
Hua, Q, Barbetti, M. 2004. Review of tropospheric bomb 14C data for carbon cycle modeling and age calibration purposes. Radiocarbon 46(3):12731298.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Rakowski, AZ. 2013. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):114.CrossRefGoogle Scholar
Hua, Q, Turnbull, J, Santos, G, Rakowski, A, Ancapichun, S, de Pol-Holz, R, Hammer, S, Lehman, S, Levin, I, Miller, J, Palmer, J, Turney, C. 2021. Atmospheric radiocarbon for the period 1950–2019. Radiocarbon. Forthcoming.CrossRefGoogle Scholar
Keeling, CD. 1960. The concentration and isotopic abundances of carbon dioxide in the atmosphere. Tellus 12(2).CrossRefGoogle Scholar
Key, RM. 2004. A global ocean carbon climatology: results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles 18(4).CrossRefGoogle Scholar
Kjellström, E, Feichter, J, Hoffman, G. 2000. Transport of SF6 and 14CO2 in the atmospheric general circulation model ECHAM4. Tellus 52B:118.Google Scholar
Krakauer, NY, Randerson, JT, Primeau, FW, Gruber, N, Menemenlis, D. 2006. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity. Tellus 58B:390417.CrossRefGoogle Scholar
Land, C, Feichter, J, Sausen, R. 2002. Impact of vertical resolution on the transport of passive tracers in the ECHAM4 model. Tellus 54B:344360.CrossRefGoogle Scholar
Lee, H, Dlugokencky, EJ, Turnbull, JC, Lee, S, Lehman, SJ, Miller, JB, Pétron, G, Lim, J-S, Lee, G-W, Lee, S-S et al. 2020. Observations of atmospheric 14CO2 at Anmyeondo GAW station, South Korea: implications for fossil fuel CO2 and emission ratios. Atmospheric Chemistry and Physics 20(20):1203312045.CrossRefGoogle Scholar
Lerman, JC, Mook, WG, Vogel, JC. 1970. C-14 in tree rings from different localities. Radiocarbon variations and absolute chronology. Proceedings of the 12th Nobel Symposium held at the Institute of Physics at Uppsala University. Wiley. p. 275–301.Google Scholar
Levin, I, Hammer, S, Kromer, B, Preunkert, S, Weller, R, Worthy, DE. Forthcoming 2021. Radiocarbon in global tropospheric carbon dioxide. Radiocarbon.CrossRefGoogle Scholar
Levin, I, Kromer, B. 2004. The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46(3):12611272.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schmidt, M, Sartorius, H. 2003. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophysical Research Letters 30(23):2194.CrossRefGoogle Scholar
Levin, I, Kromer, B, Schoch-Fischer, H, Bruns, M, Munnich, M, Berdau, D, Vogel, JC, Munnich, KO. 1985. 25 years of tropospheric 14C observations in central Europe. Radiocarbon 27(1):119.CrossRefGoogle Scholar
Levin, I, Kromer, B, Wagenbach, DT, Münnich, KO. 1987. Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus B: Chemical and Physical Meteorology 39(1–2):8995.CrossRefGoogle Scholar
Levin, I, Naegler, T, Kromer, B, Diehl, M, Francey, RJ, Gomez-Pelaez, AJ, Steele, LP, Wagenbach, D, Weller, R, Worthy, DE. 2010. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 . Tellus 62B(1):2646.CrossRefGoogle Scholar
Libby, WF, Anderson, E, Arnold, J. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science 109:227228.CrossRefGoogle ScholarPubMed
Lowe, DC. 1974. Atmospheric carbon dioxide in the Southern Hemisphere. Journal of the Clean Air Society of Australia and New Zealand 8:1215.Google Scholar
Lowe, DC. 1984. Preparation of graphite targets for radiocarbon dating by tandem accelerator mass spectrometer (TAMS). International Journal of Applied Radiatio and Isotopes 35(5):349352.CrossRefGoogle Scholar
Lowe, DC, Brenninkmeijer, CAM, Manning, MR, Sparks, RJ, Wallace, G. 1988. Radiocarbon determination of atmospheric methane at Baring Head, New Zealand. Nature 332:522525.CrossRefGoogle Scholar
Lowe, DC, Guenther, PR, Keeling, CD. 1979. The concentration of atmospheric carbon dioxide at Baring Head, New Zealand. Tellus 31B:5867.Google Scholar
Manning, MR, Lowe, DC, Melhuish, WH, Sparks, RJ, Wallace, G, Brenninkmeijer, CAM, McGill, RC. 1990. The use of radiocarbon measurements in atmospheric sciences. Radiocarbon 32(1):3758.CrossRefGoogle Scholar
Naegler, T, Levin, I. 2006. Closing the global radiocarbon budget 1945–2005. Journal of Geophysical Research 111(D12).CrossRefGoogle Scholar
Newman, S, Xu, X, Gurney, KR, Hsu, YK, Li, KF, Jiang, X, Keeling, R, Feng, S, apos, Keefe, D et al. 2016. Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity. Atmospheric Chemistry and Physics 16(6):38433863.CrossRefGoogle Scholar
Niu, Z, Zhou, W, Cheng, P, Wu, S, Lu, X, Xiong, X, Du, H, Fu, Y. 2016. Observations of atmospheric Δ14CO2 at the global and regional background sites in China: implication for fossil fuel CO2 inputs. Environmental Science & Technology.CrossRefGoogle Scholar
Nydal, R, Gislefoss, JS. 1996. Further application of bomb 14C as a tracer in the atmosphere and ocean. Radiocarbon 38:389406.CrossRefGoogle Scholar
Nydal, R, Lövseth, K. 1983. Tracing bomb 14C in the atmosphere 1962–1980. Journal of Geophysical Research 88(C6).CrossRefGoogle Scholar
Palstra, SWL, Karstens, U, Streurman, H-J, Meijer, HAJ. 2008. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: measurements and model comparison. Journal of Geophysical Research 113(D21):D21305.CrossRefGoogle Scholar
Peacock, S. 2004. Debate over the ocean bomb radiocarbon sink: closing the gap. Global Biogeochemical Cycles 18(2).CrossRefGoogle Scholar
Priestley, R. 2012. Mad on radium: New Zealand in the Atomic Age. Auckland, New Zealand: Auckland University Press.Google Scholar
Rafter, TA. 1953. The preparation of carbon for C14 age measurements. New Zealand Journal of Science and Technology. July 1953:64–89.Google Scholar
Rafter, TA. 1955a. 14C variations in nature and the effect on radiocarbon dating. New Zealand Journal of Science and Technology B37(1):363370.Google Scholar
Rafter, TA. 1955b. Carbon dioxide as a substitute for solid carbon in 14C age measurements. New Zealand Journal of Science and Technology 363–370.Google Scholar
Rafter, TA. 1965. Problems in the establishment of a carbon-14 and tritium laboratory. Paper presented at: The Sixth International Conference Radiocarbon and Tritium Dating. Washington State University, Pullman, WA, USA.Google Scholar
Rafter, TA, Fergusson, G. 1957a. The atom bomb effect—recent increase in the 14C content of the atmosphere, biosphere, and surface waters of the oceans. New Zealand Journal of Science and Technology. Sept 1957:871–883.Google Scholar
Rafter, TA, Fergusson, GJ. 1957b. “Atom Bomb Effect”—recent Increase of carbon-14 content of the atmosphere and biosphere. Science 126(3273):557558.CrossRefGoogle ScholarPubMed
Rafter, TA, Fergusson, GJ. 1958. Atmospheric radiocarbon as a tracer in geophysical circulation problems. Lower Hutt, New Zealand: Department of Scientific and Industrial Research. No. A/CONF.15/P/2128.Google Scholar
Randerson, JT, Enting, IG, Schuur, EAG, Caldeira, K, Fung, IY. 2002. Seasonal and latitudinal variability of troposphere Δ14CO2: Post bomb contributions from fossil fuels, oceans, the stratosphere, and the terrestrial biosphere. Global Biogeochemical Cycles 16(4):1112.CrossRefGoogle Scholar
Revelle, R. 1986. Balzan Prize address.Google Scholar
Riley, WJ, Hsueh, DY, Randerson, JT, Fischer, ML, Hatch, JG, Pataki, DE, Wang, W, Goulden, ML. 2008. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. Journal of Geophysical Research 113(G4):G04002.CrossRefGoogle Scholar
Rogers, KM, Turnbull, JC, Dahl, J, Phillips, A, Bridson, J, Raymond, LG, Liu, Z, Yuan, Y, Hill, SJ. 2021. Authenticating bioplastics using carbon and hydrogen stable isotopes—an alternative analytical approach. Rapid Communications in Mass Spectrometry e9051.CrossRefGoogle Scholar
Sparks, RJ. 2004. Radiocarbon dating—New Zealand beginnings. New Zealand Science Review 61(2):3941.Google Scholar
Sparks, RJ, Melhuish, WH, McKee, JW, Ogden, J, Palmer, JG, Molloy, BP. 1995. 14C calibration in the Southern Hemisphere and the date of the last Taupo eruption: evidence from tree-ring sequences. Radiocarbon 37(2):155163.CrossRefGoogle Scholar
Stuiver, M, Braziunas, TF. 1998. Anthropogenic and solar components of hemispheric 14C. Geophysical Research Letters 25(3):329332.CrossRefGoogle Scholar
Suess, HE. 1955. Radiocarbon concentration in modern wood. Science 122(3166):414417.CrossRefGoogle Scholar
Sweeney, C, Gloor, E, Jacobson, AR, Key, RM, McKinley, G, Sarmiento, JL, Wanninkhof, R. 2007. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochemical Cycles 21(2).CrossRefGoogle Scholar
Tans, PP, De Jong, AF, Mook, WG. 1979. Natural atmospheric 14C variation and the Suess effect. Nature 280:826828.CrossRefGoogle Scholar
Telegadas, K, Gray, J, Sowl, RE, Ashenfelter, TE. 1972. Carbon-14 measurements in the stratosphere from a balloon-borne moecular sieve sampler. Health and Safety Laboratory Environmental Quarterly 246.Google Scholar
Telloli, C, Rizzo, A, Canducci, C, Bartolomei, P. 2019. Determination of bio content in polymers used in the packaging of food products. Radiocarbon 61(6):19731981.CrossRefGoogle Scholar
Trumbore, SE. 2000. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics. Ecological Applications 10(2):399411.CrossRefGoogle Scholar
Turnbull, J, Karion, A, Davis, KJ, Lauvaux, T, Miles, NL, Richardson, SJ, Sweeney, C, McKain, K, Lehman, SJ, Gurney, KR et al. 2018. Synthesis of urban CO2 emission estimates from multiple methods from the Indianapolis Flux Project (INFLUX). Environmental Science and Technology.CrossRefGoogle Scholar
Turnbull, JC, Karion, A, Fischer, ML, Faloona, I, Guilderson, T, Lehman, SJ, Miller, BR, Miller, JB, Montzka, S, Sherwood, T et al. 2011. Assessment of fossil fuel carbon dioxide and other anthropogenic trace gas emissions from airborne measurements over Sacramento, California in spring 2009. Atmospheric Chemistry and Physics 11(2):705721.CrossRefGoogle Scholar
Turnbull, JC, Keller, ED, Norris, MW, Wiltshire, RM. 2016. Independent evaluation of point source fossil fuel CO2 emissions to better than 10%. Proceedings of the National Academy of Sciences 113(37):1028710291.CrossRefGoogle ScholarPubMed
Turnbull, JC, Mikaloff Fletcher, SE, Ansell, I, Brailsford, GW, Moss, RC, Norris, MW, Steinkamp, K. 2017. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014. Atmospheric Chemistry and Physics 17(23):1477114784.CrossRefGoogle Scholar
Uno, KT, Quade, J, Fisher, DC, Wittemyer, G, Douglas-Hamilton, I, Andanje, S, Omondi, P, Litoroh, M, Cerling, TE. 2013. Bomb-curve radiocarbon measurement of recent biologic tissues and applications to wildlife forensics and stable isotope (paleo)ecology. Proceedings of the National Academy of Sciences 110(29):1173611741.CrossRefGoogle Scholar
Van Der Laan, S, Karstens, U, Neubert, REM, Van Der Laan-Luijkx, IT, Meijer, HAJ. 2010. Observation-based estimates of fossil fuel-derived CO2 emissions in the Netherlands using Δ14C, CO and 222Radon. Tellus 62B(5):389402.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *