Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-jpcp9 Total loading time: 0.418 Render date: 2022-12-06T17:44:36.665Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Hypothetical Influence of Bacterial Communities on the Transfer of 14C-Depleted Carbon to Infaunal Foraminifera: Implications for Radiocarbon Dating in Coastal Environments

Published online by Cambridge University Press:  20 May 2019

Clément Poirier*
Affiliation:
Morphodynamique Continentale et Côtière, Université de Caen Normandie, CNRS, 14000 Caen, France
Juliette Baumann
Affiliation:
UMR 7266 LIENSs, CNRS/Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
Eric Chaumillon
Affiliation:
UMR 7266 LIENSs, CNRS/Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
*
*Corresponding author. Email: clement.poirier@unicaen.fr.

Abstract

Little is known about the potential complications that may arise from the use of coastal foraminifera for radiocarbon (14C) dating. The aim of this study is to report the fortuitous finding of 14C-dated Haynesina germanica individuals picked from two sediment cores (Pertuis Charentais, France), which appeared 2500–2000 years older than their expected age of deposition. Stratigraphical and micropaleontogical evidence have ruled out the possible effect of reworking of calcareous tests from previous strata. Similar anomalous 14C ages were obtained on abundant lignocellulose debris recovered from the cores, which are supplied by rivers flowing into the study area. Given that H. germanica is an infaunal species, we hypothesize that in-situ living individuals acquired the 14C-depleted isotopic signature of lignocellulose debris within the sediment prior to definitive burial, following an unexplored pathway of carbon transfer between the two compartments. Based on the literature, we propose a plausible explanation, which involves bacterial communities living in the study area. This putative role of bacteria may have considerable importance for past and future studies of Holocene environmental changes in coastal environments. Further work is now needed to explore this hypothesis with more robust, direct evidence based on comprehensive geochemical, geochronological and microbiological studies.

Type
Research Article
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allard, J, Chaumillon, E, Bertin, X, Poirier, C, Ganthy, F. 2010 Sedimentary record of environmental changes and human interferences in a macrotidal bay for the last millenaries: the Marennes-Oléron Bay (SW France). Bulletin de la Société Géologique de France 181(2):151169.CrossRefGoogle Scholar
Allard, J, Chaumillon, E, Poirier, C, Sauriau, PG, Weber, O. 2008. Evidence of former Holocene sea level in the Marennes-Oléron Bay (French Atlantic coast). Comptes Rendus Geoscience 340(5):306314. doi: 10.1016/j.crte.2008.01.007 CrossRefGoogle Scholar
Angulo, RJ, de Souza, MC, Assine, ML, Pessenda, LCR, Disaró, ST. 2008. Chronostratigraphy and radiocarbon age inversion in the Holocene regressive barrier of Paraná, southern Brazil. Marine Geology 252(3-4):111119. doi: 10.1016/j.margeo.2008.03.006 CrossRefGoogle Scholar
Armynot du Châtelet, E, Debenay, JP, Degré, D, Sauriau, PG. 2005. Utilisation des foraminifères benthiques comme indicateurs de paléo-niveaux marins? Etude du cas de l’anse de l’Aiguillon. Comptes Rendus Palevol 4(1–2):209223. doi: 10.1016/j.crpv.2004.11.014.CrossRefGoogle Scholar
Armynot du Châtelet, E, Degré, D, Sauriau, PG, Debenay, JP. 2009. Distribution of living benthic foraminifera in relation with environmental variables within the Aiguillon cove (Atlantic coast, France): improving knowledge for paleoecological interpretation. Bulletin de la Société Géologique de France 180(2):131144. doi: 10.2113/gssgfbull.180.2.131.CrossRefGoogle Scholar
Bach, LT. 2015. Reconsidering the role of carbonate ion concentration in calcification by marine organisms. Biogeosciences 12(16):49394951. doi: 10.5194/bg-12-4939-2015.CrossRefGoogle Scholar
Barker, S, Broecker, W, Clark, E, Hajdas, I. 2007. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone. Paleoceanography and Paleoclimatology 22(2). doi: 10.1029/2006pa001354.Google Scholar
Bassoullet, P, Le Hir, P, Gouleau, D, Robert, S. 2000. Sediment transport over an intertidal mudflat: field investigations and estimation of fluxes within the “Baie de Marennes-Oleron” (France). Continental Shelf Research 20(12–13):16351653. doi: 10.1016/s0278-4343(00)00041-8.CrossRefGoogle Scholar
Baumann, J, Chaumillon, E, Schneider, JL, Jorissen, F, Sauriau, PG, Richard, P, Bonnin, J, Schmidt, S. 2017. Contrasting sediment records of marine submersion events related to wave exposure, Southwest France. Sedimentary Geology 353:158170. doi: 10.1016/j.sedgeo.2017.03.009.CrossRefGoogle Scholar
Becker-Heidmann, P, Scharpenseel, HW, Wiechmann, H. 1996. Hamburg radiocarbon thin layer soils database. Radiocarbon 38(2):295345. doi: 10.1017/s0033822200017665.CrossRefGoogle Scholar
Benner, R, Moran, MA, Hodson, RE. 1986. Biogeochemical cycling of lignocellulosic carbon in marine and freshwater ecosystems: relative contributions of procaryotes and eucaryotes. Limnology and Oceanography 31(1):89100. doi: 10.4319/lo.1986.31.1.0089.CrossRefGoogle Scholar
Berger, WH, Heath, GR. 1968. Vertical mixing in pelagic sediments. Journal of Marine Research 26:134143.Google Scholar
Berkeley, A, Perry, CT, Smithers, SG, Horton, BP, Taylor, KG. 2007. A review of the ecological and taphonomic controls on foraminiferal assemblage development in intertidal environments. Earth-Science Reviews 83(3–4):205230. doi: 10.1016/j.earscirev.2007.04.003.CrossRefGoogle Scholar
Bertin, X, Chaumillon, E. 2005. New insights in shallow gas generation from very high resolution seismic and bathymetric surveys in the Marennes-Oléron Bay, France. Marine Geophysical Researches 26:225233. doi: 10.1007/s11001-005-3720-y.CrossRefGoogle Scholar
Bertin, X, Castelle, B, Chaumillon, E, Butel, R, Quique, R. 2008. Longshore transport estimation and inter-annual variability at a high-energy dissipative beach: St. Trojan beach, SW Oléron Island, France. Continental Shelf Research 28(10–11):13161332. doi: 10.1016/j.csr.2008.03.005.CrossRefGoogle Scholar
Bertin, X, Chaumillon, E, Weber, N, Tesson, M. 2004. Morphological evolution and time-varying bedrock control of main channel at a mixed energy tidal inlet: Maumusson Inlet, France. Marine Geology 204(1–2):187202. doi: 10.1016/s0025-3227(03)00353-0.CrossRefGoogle Scholar
Blaauw, M, Christen, JA. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6:457474. doi: 10.1214/11-BA618.Google Scholar
Billeaud, I, Chaumillon, E, Weber, O. 2005. Evidence of a major environmental change recorded in a macrotidal bay (Marennes-Oleron Bay, France) by correlation between VHR seismic profiles and cores. Geo-Marine Letters 25(1):110. doi: 10.1007/s00367-004-0183-0.CrossRefGoogle Scholar
Biteau, JJ, Marrec, AL, Vot, ML, Masset, JM. 2006. The Aquitaine Basin. Petroleum Geoscience 12(3):247–73. doi: 10.1144/1354-079305-674.CrossRefGoogle Scholar
Boetius, A, Ravenschlag, K, Schubert, CJ, Rickert, D, Widdel, F, Gieseke, A, Amann, R, Jørgensen, BB, Witte, U, Pfannkuche, O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407(6804):623626. doi: 10.1038/35036572.CrossRefGoogle ScholarPubMed
Breilh, JF, Chaumillon, E, Bertin, X, Gravelle, M. 2013. Assessment of static flood modeling techniques: Application to contrasting marshes flooded during Xynthia (western France). Natural Hazards and Earth System Science 13(6):15951612. doi: 10.5194/nhess-13-1595-2013.CrossRefGoogle Scholar
Brock, F, Higham, T, Ditchfield, P, Bronk Ramsey, C. 2010. Current pretreatment methods for AMS radiocarbon dating at the Oxford Radiocarbon Accelerator Unit (ORAU). Radiocarbon 52(1):103112. doi: 10.1017/S0033822200045069.CrossRefGoogle Scholar
Broecker, W, Barker, S, Clark, E, Hajdas, I, Bonani, G. 2006. Anomalous radiocarbon ages for foraminifera shells. Paleoceanography and Paleoclimatology 21(2). doi: 10.1029/2005pa001212.Google Scholar
Broecker, W, Matsumoto, K, Clark, E, Hajdas, I, Bonani, G. 1999. Radiocarbon age differences between coexisting foraminiferal species. Paleoceanography and Paleoclimatology 14(4):431436. doi: 10.1029/1999pa900019.CrossRefGoogle Scholar
Callard, L, Long, AJ, Plets, RM, Cooper, A, Belknap, DF, Edwards, R, Jackson, D, Kelley, JT, Long, D, Milne, GA, Monteys, X, Quinn, R. 2013. Radiocarbon dating of marine material: mollusc versus foraminifera ages. AGU Fall Meeting Abstracts.Google Scholar
Cearreta, A, Murray, JW. 2000. AMS 14C dating of Holocene estuarine deposits: consequences of high-energy and reworked foraminifera. The Holocene 10(1):155159. doi: 10.1191/095968300669405262.CrossRefGoogle Scholar
Cesbron, F, Geslin, E, Jorissen, FJ, Delgard, ML, Charrieau, L, Deflandre, B, Jézéquel, D, Anschutz, P, Metzger, E. 2016. Vertical distribution and respiration rates of benthic foraminifera: Contribution to aerobic remineralization in intertidal mudflats covered by Zostera noltei meadows. Estuarine, Coastal and Shelf Science 179:2338. doi: 10.1016/j.ecss.2015.12.005.CrossRefGoogle Scholar
Chabbi, A, Kögel-Knabner, I, Rumpel, C. 2009. Stabilised carbon in subsoil horizons is located in spatially distinct parts of the soil profile. Soil Biology & Biogeochemistry 41:256261. doi: 10.1016/j.soilbio.2008.10.033.CrossRefGoogle Scholar
Chaumillon, E, Weber, N. 2006. Spatial variability of modern incised valleys on the French Atlantic coast: comparison between the Charente and the Lay–Sèvre incised valleys. In Dalrymple, RW, Leckie, DA, Tillman, RW, editors. Incised valleys in time and space. SEPM Special Publication 85:5785. doi: 10.2110/pec.06.85.0057.CrossRefGoogle Scholar
Chaumillon, E, Gillet, H, Weber, N, Tesson, M. 2002. Evolution temporelle et architecture interne d’un banc sableux estuarien: la Longe de Boyard (littoral atlantique, France). Comptes Rendus Geoscience 334(2):119126. doi: 10.1016/s1631-0713(02)01710-8.CrossRefGoogle Scholar
Chaumillon, E, Tessier, B, Weber, N, Tesson, M, Bertin, X. 2004. Buried sandbodies within present-day estuaries (Atlantic coast of France) revealed by very high resolution seismic surveys. Marine Geology 211(3–4):189214. doi: 10.1016/j.margeo.2004.07.004.CrossRefGoogle Scholar
Chaumillon, E, Proust, JN, Menier, D, Weber, N. 2008. Incised-valley morphologies and sedimentary-fills within the inner shelf of the Bay of Biscay (France): a synthesis. Journal of Marine Systems 72(1–4):383396. doi: 10.1016/j.jmarsys.2007.05.014.CrossRefGoogle Scholar
Colman, SM, Baucom, PC, Bratton, JF, Cronin, TM, McGeehin, JP, Willard, D, Zimmerman, AR, Vogt, PR. 2002. Radiocarbon dating, chronologic framework, and changes in accumulation rates of Holocene estuarine sediments from Chesapeake Bay. Quaternary Research 57(1):5870. doi: 10.1006/qres.2001.2285.CrossRefGoogle Scholar
Dabrin, A, Schäfer, J, Bertrand, O, Masson, M, Blanc, G. 2014. Origin of suspended matter and sediment inferred from the residual metal fraction: application to the Marennes Oleron Bay, France. Continental Shelf Research 72:119130. doi: 10.1016/j.csr.2013.07.008.CrossRefGoogle Scholar
Debenay, JP, Bicchi, E, Goubert, E, Armynot du Châtelet, E. 2006. Spatiotemporal distribution of benthic foraminifera in relation to estuarine dynamics (Vie estuary, Vendée, W France). Estuarine, Coastal and Shelf Science 67(1–2):181197. doi: 10.1016/j.ecss.2005.11.014.CrossRefGoogle Scholar
de Nooijer, L, Spero, H, Erez, J, Bijma, J, Reichart, G. 2014. Biomineralization in perforate foraminifera. Earth-Science Reviews 135:4858. doi: 10.1016/j.earscirev.2014.03.013.CrossRefGoogle Scholar
de Resseguier, A. 1983. A portable coring device for use in the intertidal environment. Marine Geology 52(1–2):M19M23.CrossRefGoogle Scholar
Durand, M, Mojtahid, M, Maillet, G, Proust, JN, Lehay, D, Ehrhold, A, Barré, A, Howa, H, 2016. Mid- to late-Holocene environmental evolution of the Loire estuary as observed from sedimentary characteristics and benthic foraminiferal assemblages. Journal of Sea Research 118:1734. doi: 10.1016/j.seares.2016.08.003.CrossRefGoogle Scholar
El Ghobary, H, Dumon, JC. 1984. Contribution à l’étude des eaux interstitielles de sédiments littoraux: baie de Marennes-Oléron (S.W. France). Bulletin de l’Institut de Géologie du Bassin d’Aquitaine 36:519.Google Scholar
Espitalié, J, Deroo, G, Marquis, F. 1985. La pyrolyse Rock-Eval et ses applications. Première partie. Revue de l’Institut Français du Pétrole 40(5):563579. doi: 10.2516/ogst:1985035.CrossRefGoogle Scholar
Fontugne, MR, Jouanneau, JM. 1987. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary: evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuarine, Coastal and Shelf Science 24(3):377387. doi: 10.1016/0272-7714(87)90057-6.CrossRefGoogle Scholar
Froidefond, JM, Jegou, AM, Hermida, J, Lazure, P, Castaing, P. 1998. Variabilité du panache turbide de la Gironde par télédétection. Effets des facteurs climatiques. Oceanologica Acta 21(2):191207. doi: 10.1016/s0399-1784(98)80008-x CrossRefGoogle Scholar
Fujiwara, O, Kamataki, T, Masuda, F. 2004. Sedimentological time-averaging and 14C dating of marine shells. Nuclear Instruments and Methods in Physics Research Section B 223–224:540544. doi: 10.1016/j.nimb.2004.04.101 CrossRefGoogle Scholar
Gillikin, DP, Lorrain, A, Bouillon, S, Willenz, P, Dehairs, F. 2006. Stable carbon isotopic composition of Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton. Organic Geochemistry 37(10):13711382. doi: 10.1016/j.orggeochem.2006.03.008 CrossRefGoogle Scholar
Gouleau, D, Jouanneau, JM, Weber, O, Sauriau, PG. 2000. Short- and long-term sedimentation on Montportail–Brouage intertidal mudflat, Marennes–Oléron Bay (France). Continental Shelf Research 20(12–13):15131530. doi: 10.1016/S0278-4343(00)00035-2 CrossRefGoogle Scholar
Guérin, T, Bertin, X, Chaumillon, E. 2016. Wave control on the rhythmic development of a wide estuary mouth sandbank: a process-based modelling study. Marine Geology 380:7989. doi: 10.1016/j.margeo.2016.06.013 CrossRefGoogle Scholar
Haslett, J, Parnell, A. 2008. A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal Statistical Society: Series C (Applied Statistics) 57(4):399418. doi: 10.1111/j.1467-9876.2008.00623.x CrossRefGoogle Scholar
Heier-Nielsen, S, Conradsen, K, Heinemeier, J, Knudsen, KL, Nielsen, HL, Rud, N, Sveinbjörnsdóttir, ÁE. 1995. Radiocarbon dating of shells and foraminifera from the Skagen Core, Denmark: evidence of reworking. Radiocarbon 37(2):119130. doi: 10.1017/s0033822200030551 CrossRefGoogle Scholar
Hinrichs, KU, Hayes, JM, Sylva, SP, Brewer, PG, DeLong, EF. 1999. Methane-consuming archaebacteria in marine sediments. Nature 398(6730):802805. doi: 10.1038/19751 CrossRefGoogle ScholarPubMed
Ji, S, Wang, S, Tan, Y, Chen, X, Schwarz, W, Li, F. 2012. An untapped bacterial cellulolytic community enriched from coastal marine sediment under anaerobic and thermophilic conditions. FEMS Microbiology Letters 335(1):3946. doi: 10.1111/j.1574-6968.2012.02636.x.CrossRefGoogle ScholarPubMed
Kidwell, SM, Bosence, DWJ. 1991. Taphonomy and time-averaging of marine shelly faunas, In Allison, PA, Briggs, DE, Taphonomy, releasing the data locked in the fossil record. New York: Plenum Press. Topics in Geobiology 9:115–209.Google Scholar
Lambeck, K. 1997. Sea-level change along the French Atlantic and Channel coasts since the time of the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 129(1–2):122. doi: 10.1016/s0031-0182(96)00061-2.CrossRefGoogle Scholar
Lavergne, C, Agogué, H, Leynaert, A, Raimonet, M, De Wit, R, Pineau, P, Bréret, M, Lachaussée, N, Dupuy, C. 2017. Factors influencing prokaryotes in an intertidal mudflat and the resulting depth gradients. Estuarine, Coastal and Shelf Science 189:7483. doi: 10.1016/j.ecss.2017.03.008.CrossRefGoogle Scholar
Le Bissonnais, Y, Thorette, J, Bardet, C, Daroussin, J. 2002. L’érosion hydrique des sols en France. Research report, INRA.Google Scholar
Leorri, E, Gehrels, WR, Horton, BP, Fatela, F, Cearreta, A. 2010. Distribution of foraminifera in salt marshes along the Atlantic coast of SW Europe: tools to reconstruct past sea-level variations. Quaternary International 221(1–2):104115. doi: 10.1016/j.quaint.2009.10.033.CrossRefGoogle Scholar
Liu, Z, Zhao, M, Sun, H, Yang, R, Chen, B, Yang, M, Zeng, Q, Zeng, H. 2017. “Old” carbon entering the South China Sea from the carbonate-rich Pearl River Basin: coupled action of carbonate weathering and aquatic photosynthesis. Applied Geochemistry 78:96104. doi: 10.1016/j.apgeochem.2016.12.01.CrossRefGoogle Scholar
Lougheed, BC, Filipsson, HL, Snowball, I. 2013. Large spatial variations in coastal 14C reservoir age– a case study from the Baltic Sea. Climate of the Past 9:10151028. doi: 10.5194/cp-9-1015-2013.CrossRefGoogle Scholar
Malet, N, Sauriau, PG, Ryckaert, M, Malestroit, P, Guillou, G. 2008. Dynamics and sources of suspended particulate organic matter in theMarennes-Oléron oyster farming bay: insights from stable isotopes and microalgae ecology. Estuarine, Coastal and Shelf Science 78(3):576586. doi: 10.1016/j.ecss.2007.11.001.CrossRefGoogle Scholar
Martin, RE, Harris, MS, Liddel, WD. 1995. Taphonomy and time-averaging of foraminiferal assemblages in Holocene tidal flat sediments, Bahia la Choya, Sonora, Mexico (northern Gulf of California). Marine Micropaleontology 26:187206. doi: 10.1016/0377-8398(95)00009-7.CrossRefGoogle Scholar
Mojtahid, M, Jorissen, F, Lansard, B, Fontanier, C, Bombled, B, Rabouille, C. 2009. Spatial distribution of live benthic foraminifera in the Rhône prodelta: faunal response to a continental–marine organic matter gradient. Marine Micropalentology 70(3–4):177200. doi: 10.1016/j.marmicro.2008.12.006.CrossRefGoogle Scholar
Mojtahid, M, Zubkov, MV, Hartmann, M, Gooday, AJ. 2011. Grazing of intertidal benthic foraminifera on bacteria: assessment using pulse-chase radiotracing. Journal of Experimental Marine Biology and Ecology 399:2534.CrossRefGoogle Scholar
Ozuolmez, D, Na, H, Lever, MA, Kjeldsen, KU, Jørgensen, BB, Plugge, CM. 2015. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Frontiers in Microbiology 6:492. doi: 10.3389/fmicb.2015.00492.CrossRefGoogle ScholarPubMed
Parnell, AC, Haslett, J, Allen, J, Buck, C, Huntley, B. 2008. A flexible approach to assessing synchroneity of past events using Bayesian reconstructions of sedimentation history. Quaternary Science Reviews 27(19–20):18721885. doi: 10.1016/j.quascirev.2008.07.009.CrossRefGoogle Scholar
Parra, M, Trouky, H, Jouanneau, JM, Grousset, F, Latouche, C, Castaing, P. 1998. Etude isotopique (Sr–Nd) de l’origine des dépôts fins holocènes du littoral atlantique (S-O France). Oceanologica Acta 21(5):631644. doi: 10.1016/s0399-1784(99)80022-x.CrossRefGoogle Scholar
Patel, GB, Sprott, GD. 1990. Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. International Journal of Systematic Bacteriology 40(1):7982. doi: 10.1099/00207713-40-1-79.CrossRefGoogle Scholar
Peng, TH, Broecker, WS, Berger, WH. 1979. Rates of benthic mixing in deep-sea sediments as determined by radioactive tracers. Quaternary Research 11(1):141149. doi: 10.1016/0033-5894(79)90074-7.CrossRefGoogle Scholar
Poirier, C. 2010. Enregistrements sédimentaires des changements environnementaux séculaires a millénaires par la micro- et la macrofaune benthiques littorals [PhD thesis]. Université de La Rochelle.Google Scholar
Poirier, C, Chaumillon, E, Arnaud, F. 2011. Siltation of river-influenced coastal environments: respective impact of late Holocene land use and high-frequency climate changes. Marine Geology 290(1–4):5162. doi: 10.1016/j.margeo.2011.10.008.CrossRefGoogle Scholar
Poirier, C, Sauriau, PG, Chaumillon, E, Allard, J. 2009. Can molluscan assemblages give insights into Holocene environmental changes other than sea level rise? A case study from a macrotidal bay (Marennes–Oléron, France). Palaeogeography, Palaeoclimatology, Palaeoecology 280(1–2):105118. doi: 10.1016/j.palaeo.2009.06.002.CrossRefGoogle Scholar
Poirier, C, Sauriau, PG, Chaumillon, E, Bertin, X. 2010. Influence of hydrosedimentary factors on mollusc death assemblages in a temperate mixed tide-and-wave dominated coastal environment: implications for the fossil record. Continental Shelf Research 30(17):18761890. doi: 10.1016/j.csr.2010.08.015.CrossRefGoogle Scholar
Poirier, C, Chaumillon, E, Poitevin, C. 2016. Comparison of estuarine sediment record with modelled rates of sediment supply from a western European catchment since 1500. Comptes Rendus Geoscience 348(7):479488. doi: 10.1016/j.crte.2015.02.009.CrossRefGoogle Scholar
Pujos-Lamy, A. 1984. Foraminifères benthiques et bathymétrie: le Cénozoique du golfe de Gascogne. Palaeogeography, Palaeoclimatology, Palaeoecology 48(1):3960.CrossRefGoogle Scholar
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at https://www.R-project.org/.Google Scholar
Regrain, R. 1980. Géographie physique et télédétection des marais charentais. Paillard, Abbeville.Google Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887. doi: 10.2458/azu_js_rc.55.16947.CrossRefGoogle Scholar
Richard, P, Riera, P, Galois, R. 1997. Temporal variations in the chemical and carbon isotope compositions of marine and terrestrial organic inputs in the bay of Marennes-Oléron, France. Journal of Coastal Research 13(3):879889.Google Scholar
Riera, P, Richard, P. 1996. Isotopic determination of food sources of Crassostrea gigas along a trophic gradient in the estuarine bay of Marennes-Oléron. Estuarine, Coastal and Shelf Science 42:347360. doi: 10.1006/ecss.1996.0023.CrossRefGoogle Scholar
Roussel, EG, Sauvadet, AL, Allard, J, Chaduteau, C, Richard, P, Bonavita, MAC, Chaumillon, E. 2009. Archaeal methane cycling communities associated with gassy subsurface sediments of Marennes-Oléron Bay (France). Geomicrobiology Journal 26(1):3143. doi: 10.1080/01490450802599284.CrossRefGoogle Scholar
Seuront, L, Bouchet, VMP. 2015. The devil lies in details: new insights into the behavioural ecology of intertidal foraminifera. The Journal of foraminiferal Research 45(4):390401. doi: 10.2113/gsjfr.45.4.390.CrossRefGoogle Scholar
Sibuet, JC, Srivastava, SP, Spakman, W. 2004. Pyrenean orogeny and plate kinematics. Journal of Geophysical Research Solid Earth 109(B8). doi: 10.1029/2003jb002514.Google Scholar
Stéphan, P, Goslin, J. 2014. Evolution du niveau marin relatif à l’Holocène long des côtes françaises de l’Atlantique et de la Manche: réactualisation des données par la méthode des sea-level index points. Quaternaire 25(4):295312. doi: 10.4000/quaternaire.7269.CrossRefGoogle Scholar
Tisnérat-Laborde, N, Paterne, M, Métivier, B, Arnold, M, Yiou, P, Blamart, D, Raynaud, S. 2010. Variability of the northeast Atlantic sea surface Δ14C and marine reservoir age and the North Atlantic Oscillation (NAO). Quaternary Science Reviews 29(19–20):26332646. doi: 10.1016/j.quascirev.2010.06.013.CrossRefGoogle Scholar
Trachsel, M, Telford, RJ. 2016. All age–depth models are wrong, but are getting better. The Holocene 27(6):860869. doi: 10.1177/0959683616675939.CrossRefGoogle Scholar
Traini, C, Menier, D, Proust, JN, Sorrel, P. 2013. Transgressive systems tract a ria-type estuary: the Late Holocene Vilaine River drowned valley (France). Marine Geology 337:140155. doi: 10.1016/j.margeo.2013.02.005.CrossRefGoogle Scholar
Vonk, JE, Drenzek, NJ, Hughen, KA, Stanley, RHR, McIntyre, C, Montluçon, DB, Giosan, L, Southon, JR, Santos, GM, Druffel, ERM, Andersson, AA, Sköld, M, Eglinton, TI. 2019. Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds. Geochimica et Cosmochimica Acta 244:502521. doi: 10.1016/j.gca.2018.09.034.CrossRefGoogle Scholar
Weber, N, Chaumillon, E, Tesson, M. 2004a. Enregistrement de la dernière montée du niveau marin dans l’architecture interne d’une vallée incisée: pertuis Breton (Charente-Maritime). Comptes Rendus Geoscience 336(14):12731282. doi: 10.1016/j.crte.2004.07.007.CrossRefGoogle Scholar
Weber, N, Chaumillon, E. Tesson, M, Garlan, T. 2004b. Architecture and morphology of the outer segment of a mixed tide and wave-dominated-incised valley, revealed by HR seismic reflection profiling: the paleo-Charente River, France. Marine Geology 207(1–4):1738. doi: 10.1016/j.margeo.2004.04.001.CrossRefGoogle Scholar
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hypothetical Influence of Bacterial Communities on the Transfer of 14C-Depleted Carbon to Infaunal Foraminifera: Implications for Radiocarbon Dating in Coastal Environments
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hypothetical Influence of Bacterial Communities on the Transfer of 14C-Depleted Carbon to Infaunal Foraminifera: Implications for Radiocarbon Dating in Coastal Environments
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hypothetical Influence of Bacterial Communities on the Transfer of 14C-Depleted Carbon to Infaunal Foraminifera: Implications for Radiocarbon Dating in Coastal Environments
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *