Skip to main content Accessibility help

Woody vegetation, fuel and fire track the melting of the Scandinavian ice-sheet before 9500 cal yr BP

  • Christopher Carcaillet (a1) (a2), Greger Hörnberg (a3) and Olle Zackrisson (a4)


New studies indicate the presence of early Holocene ice-free areas far north in Scandinavia. Post-glacial fire and vegetation were investigated based on sedimentary charcoal and pollen from two small lakes in northern Sweden. Accumulation of organic sediment started around 10,900 and 9200 cal yr BP, showing that both lake valleys were ice-free extremely early given their northerly location. Fire events started after 9600 cal yr BP and became less common around the ‘8.2-ka event’. Woody vegetation provided fuel that contributed to fires. The first vegetation in our pollen record consisted of Hippophae, Dryas, grasses and sedges. Subsequently broadleaved trees (Betula, Salix) increased in abundance and later Pinus, Alnus, ferns and Lycopodium characterized the vegetation. Pollen from Larix, Picea and Malus were also found. The change in vegetation composition was synchronous with the decrease in lake-water pH in the region, indicating ecosystem-scale processes; this occurred during a period of net global and regional warming. The changes in fire frequency and vegetation appear independent of regional trends in precipitation. The reconstructed fire history and vegetation support the scenario of early ice-free areas far north in Scandinavia during early Holocene warming, creating favorable conditions for woody plants and wildfires.


Corresponding author

Corresponding author at: Centre for Bio-Archaeology and Ecology (UMR5059 CNRS), Université Montpellier 2, Institut de Botanique, 163 rue Broussonet, 34090 Montpellier, France. Email Address:


Hide All
Alley, R.B. The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews 19, (2000). 213226.
Alley, R.B., and Agustsdottir, A.M. The 8 k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, (2005). 11231149.
Alley, R.B., Mayewski, P.A., Sowers, T., Taylor, K.C., and Clark, P.U. Holocene climatic instability: a prominent widespread event 8200 years ago. Geology 25, (1997). 483486.
Alm, T. Øvre Æråsvatn — palynostratigraphy of a 22000 to 10000 BP lacustrine record at Andøya, northern Norway. Boreas 20, (1993). 171188.
Anonymous Väder och Vatten, no 13. (2000). Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.
Backéus, I. The Late Quaternary vegetation history of Sweden. Acta Phytogeographica Suecica 84, (1999). 1520.
Balzter, H., Gerard, F., George, C., Weedon, G., Grey, W., Combal, B., Bartholome, E., Bartalev, S., and Los, S. Coupling of vegetation growing season anomalies with hemispheric and regional scale climate patterns in Central and East Siberia. Journal of Climate 20, (2007). 37133729.
Barnekow, L., Bragée, P., Hammarlund, D., and St. Amour, N. Boreal forest dynamics in north-eastern Sweden during the last 10 000 years based on pollen analysis. Vegetation History and Archaeobotany 17, (2008). 687700.
Bennett, K.D., and Provan, J. What do we mean by ‘refugia’?. Quaternary Science Reviews 27, (2008). 24492455.
Berger, A., and Loutre, M.F. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, (1991). 297317.
Bergeron, Y., Cyr, D., Girardin, M.P., and Carcaillet, C. Will climate change drive 21st century burn rates in Canadian boreal forest outside of its natural variability: collating global climate model experiments with sedimentary charcoal data. International Journal of Wildland Fire 19, (2010). 11271139.
Berglund, B., Björse, G., and Liljegren, R. Från istid till nutid. Gustafsson, L., and Ahlén, I. Geography of Plants and Animals — National Atlas of Sweden. (1996). 1424.
Bergman, I., and Zackrisson, O. Early Mesolithic hunter-gatherers and landscape acquisition by the Arctic Circle — the Ipmatis valley 7000 BC–1 AD. Journal of Northern Studies 1–2, (2007). 123142.
Bergman, I., Påsse, T., Olofsson, A., Zackrisson, O., Hörnberg, G., Hellberg, E., and Bohlin, E. Isostatic land uplift and Mesolithic landscapes: lake-tilting, a key to the discovery of Mesolithic sites in the interior of Northern Sweden. Journal of Archaeological Science 30, (2003). 14511458.
Bergman, I., Olofsson, A., Hörnberg, G., Zackrisson, O., and Hellberg, E. Deglaciation and colonisation: pioneer settlements in northern Fennoscandia. Journal of World Prehistory 18, (2004). 155177.
Bienek, A., and Litynska-Zajac, M. New finds of Malus sylvestris (wild apple) from Neolithic sites in Poland. Vegetation History and Archaeobotany 10, (2001). 105106.
Bigler, C., Grahn, E., Laroque, I., Jeziorski, A., and Hall, R. Holocene environmental change at Lake Njulla (999 m a.s.l.), northern Sweden: a comparison with four small nearby lakes along an altitudinal Gradient. Journal of Paleolimnology 29, (2003). 1329.
Blarquez, O., and Carcaillet, C. Fire, fuel composition and resilience threshold in subalpine ecosystem. PLoS One 5, 8 (2010). e012480
Boulton, G.S., Smith, G.C., Jones, A.S., and Newsome, J. Glacial geology and glaciology of the last mid-latitude ice sheets. Journal of the Geological Society of London 142, (1985). 447474.
Broström, A., Sugita, S., Gaillard, M.J., and Pilesjö, P. Estimating the spatial scale of pollen dispersal in the cultural landscape of southern Sweden. The Holocene 15, (2005). 252262.
Carcaillet, C., Bergeron, Y., Richard, P.J.H., Fréchette, B., Gauthier, S., and Prairie, Y.T. Change of fire frequency in the eastern Canadian boreal forests during the Holocene: does vegetation composition or climate trigger the fire regime?. Journal of Ecology 89, (2001). 930946.
Carcaillet, C., Bergman, I., Delorme, S., Hörnberg, G., and Zackrisson, O. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology 88, (2007). 465477.
Carcaillet, C., Richard, P.J.H., Bergeron, Y., Fréchette, B., and Ali, A.A. Resilience of the boreal forest in response to fire-frequency changes during the Holocene assessed by pollen diversity and population dynamics. International Journal of Wildland Fire 19, (2010). 10261039.
Clark, J.S., and Royall, P.D. Local and regional sediment charcoal evidence for fire regimes in presettlement north-eastern North America. Journal of Ecology 84, (1996). 365382.
Clark, J.S., Stocks, B.J., and Richard, P.J.H. Climate implications of biomass burning since the 19th century in eastern North America. Global Change Biology 2, (1996). 433442.
Dahl, S.O., Øvstedal, A., and Nesje, J. Cirque glaciers as morphological evidence for a thin Younger Dryas ice sheet in east-central southern Norway. Boreas 26, (1997). 161180.
Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J. Data Contributors The temperature of Europe during the Holocene reconstructed from pollen data. Quaternary Science Reviews 22, (2003). 17011716.
DeLuca, T.H., Zackrisson, O., Nilsson, M.C., and Sellstedt, A. Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419, (2002). 917920.
DeLuca, T.H., MacKenzie, M.D., Gundale, M.J., and Holben, W.E. Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Science Society of American Journal 70, (2006). 448453.
Denton, G.H., and Hughes, T.J. The Last Great Ice Sheets. (1981). Wiley-Interscience, New York.
Ellison, C.R.W., Chapman, M.R., and Hall, I.R. Surface and deep ocean interactions during the cold climate event 8200 years ago. Science 312, (2006). 19291932.
Gavin, D.G., Hu, F.S., Lertzman, K., and Corbett, P. Weak climatic control of stand-scale fire history during the late Holocene. Ecology 87, (2006). 17221732.
Genries, A., Muller, S.D., Mercier, L., Bircker, L., and Carcaillet, C. Fires control spatial variability of subalpine vegetation dynamics during the Holocene in the Maurienne valley (French Alps). Ecoscience 16, (2009). 1322.
Genries, A., Finsinger, W., Asnong, H., Bergeron, Y., Carcaillet, C., Garneau, M., Hély, C., and Ali, A.A. Local versus regional processes: can soil characteristics overcome climate and fire regimes by modifying vegetation trajectories?. Journal of Quaternary Science (2012).
Girardin, M.P., and Mudelsee, M. Past and future changes in Canadian boreal wildfire activity. Ecological Applications 18, (2008). 391406.
Girardin, M.P., and Sauchin, D. Three centuries of annual area burned variability in northern North America inferred from tree rings. The Holocene 18, (2008). 205214.
Girardin, M.P., Ali, A.A., Carcaillet, C., Mudelsee, M., Drobyshev, I., Hély, C., and Bergeron, Y. Heterogeneous response of circumboreal wildfire risk to climate change since the early 1900s. Global Change Biology 15, (2009). 27512769.
Hafsten, U. The immigration and spread of Norway spruce (Picea abies (L.) Karst.) in Norway. Norsk Geografisk Tidsskrift 46, (1992). 121158.
Hély, C., Girardin, M.P., Ali, A.A., Carcaillet, C., Brewer, S., and Bergeron, Y. Eastern boreal North American wildfire risk of the past 7000 years: a model-data comparison. Geophysical Research Letters 37, (2010). L14709
Higuera, P.E., Sprugel, D.G., and Brubaker, L.B. Reconstructing fire regimes with charcoal from small-hollow sediments: a calibration with tree-ring records of fire. The Holocene 15, (2005). 238251.
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Brown, T.A., Kenedy, A.T., and Hu, F.S. Frequent fire in ancient shrub tundra: implications of paleorecords for Arctic environmental change. PLoS One 3, (2008). e0001744
Holderegger, R., and Thiel-Egenter, C. A discussion of different types of glacial refugia used in mountain biogeography and phylogeography. Journal of Biogeography 36, (2009). 476480.
Hörnberg, G., Bohlin, E., Hellberg, E., Bergman, I., Zackrisson, O., Olofsson, A., Wallin, J.-E., and Påsse, T. Effects of Mesolithic hunter-gatherers on local vegetation in a non-uniform glacio-isostatic land uplift area, northern Sweden. Vegetation History and Archaeobotany 15, (2006). 1326.
Hu, F.S., Brubaker, L.B., Gavin, D.G., Higuera, P.E., Lynch, J.A., Rupp, T.S., and Tinner, W. How climate and vegetation influence the fire regime of the Alaskan Boreal Biome: the Holocene perspective. Mitigation and Adaptation Strategies for Global Change 11, (2006). 829846.
Hu, F.S., Higuera, P.E., Walsh, J.E., Chapman, W.L., Duffy, P.A., Brubaker, L.B., and Chipman, M.L. Tundra burning in Alaska: linkages to climatic change and sea ice retreat. Journal of Geophysical Research 115, (2010). G04002
Huntley, B., and Birks, H.J.B. An atlas of past and present pollen maps for Europe 0–13,000 years ago. (1983). Cambridge University Press, Cambridge.
Jacobson, G.L., and Bradshaw, R.H.W. The selection of sites for paleovegetational studies. Quaternary Research 16, (1981). 8096.
Joly, C., Barille, L., Barreau, M., Mancheron, A., and Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Review of Palaeobotany and Palynology 146, (2007). 221233.
Jowsey, P.C. An improved peat sampler. The New Phytologist 65, (1966). 245248.
Kalis, A.J., Merkt, J., and Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe — human impact and natural causes. Quaternary Science Reviews 22, (2003). 3379.
Koff, T., Punning, J.M., and Kangur, M. Impact of forest disturbance on the pollen influx in lake sediments during the last century. Review of Palaeobotany and Palynology 111, (2000). 1929.
Kullman, L. Palaeoecological, biogeographical and palaeoclimatological implications of early Holocene immigration of Larix sibirica Ledeb. into the Scandes mountains, Sweden. Global Ecology and Biogeography Letters 7, (1998). 181188.
Kullman, L. The geological history of Picea abies in northern Sweden and adjacent parts of Norway. A contrarian hypothesis of postglacial tree immigration patterns. Geo-Öko 21, (2000). 141172.
Kullman, L. Boreal tree taxa in the central Scandes during the late-Glacial: implications for late-Quaternary forest history. Journal of Biogeography 29, (2002). 11171124.
Kullman, L. Late-glacial trees from arctic coast to alpine tundra: response to Birks et al. 2005 and 2006. Journal of Biogeography 33, (2006). 377378.
Kullman, L. Early postglacial appearance of tree species in northern Scandinavia: review and perspective. Quaternary Science Reviews 27, (2008). 24672472.
Kullman, L., and Kjällgren, L. Holocene pine tree-line evolution in the Swedish Scandes: recent tree-line rise and climate change in a long-term perspective. Boreas 35, (2006). 159168.
Landhäusser, S.M., and Wein, R.W. Postfire vegetation recovery and tree establishment at the Arctic treeline: climate-change/vegetation-response hypotheses. Journal of Ecology 81, (1993). 665672.
Larocque, I., and Hall, R. Holocene temperature estimates and chironomid community composition in the Abisko Valley, northern Sweden. Quaternary Science Reviews 23, (2004). 24532465.
Lundqvist, J. Beskrivning till jordartskarta över Jämtlands län. Sveriges Geologiska Undersökning Ca 45, (1969). 418 pp.
Lundqvist, J. Äldre istider och mellanistider samt inlandsisens avsmältning. Fredén, C. Geology: National Atlas of Sweden. (1994). 124135.
Mack, M.C., Bret-Harte, M.S., Hollingsworth, R.N., Jandt, R.R., Schuur, E.A.G., Shaver, G.R., and Verbyla, D.L. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475, (2011). 489492.
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen analysis. (1991). Blackwell, Oxford.
O'Connell, M. Early cereal-type pollen records from Connemara, western Ireland, and their possible significance. Pollen et Spores 29, (1987). 207229.
Oberg, L., and Kullman, L. Ancient subalpine clonal spruces (Picea abies): sources of postglacial vegetation history in the Swedish Scandes. Arctic 64, (2011). 183196.
Olofsson, A. Pioneer settlement in the Mesolithic of northern Sweden. Archaeology and Environment 16, (2003). Department of Archaeology and Sami Studies, Umeå University, Sweden.
Parducci, L., Jørgensen, T., Tollefsrud, M.M., Elverland, E., Alm, T., Fontana, S.L., Bennett, K.D., Haile, J., Matetovici, I., Suyama, Y., Edwards, M.E., Andersen, K., Rasmussen, M., Boessenkool, S., Coissac, E., Brochmann, C., Taberlet, P., Houmark-Nielsen, M., Larsen, N.K., Orlando, L., Gilbert, M.T.P., Kjær, K.H., Alsos, I.G., and Willerslev, E. Glacial survival of boreal trees in northern Scandinavia. Science 335, (2012). 10831086.
Paus, A. The late Weichselian and early Holocene tree-birch history in S. Norway and the Bølling Betula time-lag in NW Europe. Review of Palaeobotany and Palynology 85, (1995). 243262.
Paus, A. Vegetation and environment of the Rødalen alpine area, central Norway, with emphasis on the early Holocene. Vegetation History and Archeobotany 19, (2010). 2951.
Paus, A., Velle, G., Larsen, L., Nesje, A., and Lie, Ø. Late-glacial nunataks in central Scandinavia: biostratigraphical evidence for ice thickness from Lake Flåfattjønn, Tynset, Norway. Quaternary Science Reviews 25, (2006). 12281246.
Payette, S., Morneau, C., Sirois, L., and Desponts, M. Recent fire history of the northern Québec biomes. Ecology 70, (1989). 656673.
Richard, P.J.H. Histoire postglaciaire de la végétation au sud du lac Abitibi, Ontario et Québec. Géographie Physique et Quaternaire 34, (1980). 7794.
Segerström, U., and von Stedingk, H. Early-Holocene Picea abies (L.) Karst. in west central Sweden as revealed by pollen analysis. The Holocene 13, (2003). 897906.
Seppä, H., and Birks, H.J.B. July mean temperature and annual precipitation trends during the Holocene in the Fennoscandian tree-line area: pollen-based climate reconstructions. The Holocene 11, (2001). 527539.
Seppä, H., and Birks, H.J.B. Holocene climate reconstructions from the Fennoscandian tree-line area based on pollen data from Toskajvri. Quaternary Research 57, (2002). 191199.
Seppä, H., Bjune, A.E., Telford, R.J., Birks, H.J.B., and Veski, S. Last nine-thousand years of temperature variability in northern Europe. Climate of the Past 5, (2009). 523535.
Simak, M. Larix sukaczewii: Naturlig utbredning, biologi, ekologi och fröanskaffningsproblem. Rapport 1–1979. (1979). Department of Silviculture, Swedish University of Agricultural Sciences, Umeå.
Stewart, J.R., and Lister, A.M. Cryptic northern refugia and the origins of the modern biota. Trends in Ecology & Evolution 16, (2001). 608613.
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 3, (1993). 215230.
Sugita, S. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82, (1994). 881897.
Wotton, B.M., and Flannigan, M.D. Length of the fire season in a changing climate. The Forestry Chronicle 69, (1993). 187192.


Woody vegetation, fuel and fire track the melting of the Scandinavian ice-sheet before 9500 cal yr BP

  • Christopher Carcaillet (a1) (a2), Greger Hörnberg (a3) and Olle Zackrisson (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed