Skip to main content Accessibility help
×
Home

Sedimentary architecture of the southern basin of Lake of the Woods, Minnesota and its relation to Lake Agassiz history and Holocene environmental change

  • Devin D. Hougardy (a1) (a2) and Steven M. Colman (a1)

Abstract

Lake of the Woods (LOTW) is a large, complex lake basin once occupied by glacial Lake Agassiz. High-resolution seismic-reflection profiles and cores in the shallow, open southern basin of LOTW reveal a sedimentary architecture comprising four lacustrine units separated by three low-stand unconformities. These units represent several phases of Lake Agassiz and its changing configuration. One unconformity marks the Moorhead low phase and another marks the separation of LOTW from Lake Agassiz, perhaps ~10 cal ka BP, as the level of the latter fell, but before final drainage of Agassiz. Initially, the separate Holocene lake in the southern basin was broad and shallow, sometimes marshy or dry. Shortly after 8 cal ka BP, the southern basin dried up completely, despite the progressive rise of the northern outlet of the lake due to differential isostatic uplift. The resulting hiatus is related to the well-documented mid-Holocene arid interval in central North America. A return to wetter conditions in the late Holocene caused the southern basin of LOTW to refill since about 3800 cal yr BP. Late Holocene sediments have accumulated slightly asymmetrically in the basin, possible due to continued southward transgression of the lake as a result of isostatic tilting.

Copyright

Corresponding author

* Corresponding author: E-mail address: scolman@d.umn.edu (S.M. Colman).

References

Hide All
Bajc, A.F., Schwert, D.P., Warner, B.G., Williams, N.E., 2000. A reconstruction of Moorhead and Emerson phase environments along the eastern margin of glacial Lake Agassiz, Rainy River basin, northwestern Ontario. Canadian Journal of Earth Sciences 37, 13351353.
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.W., Bilodeau, G., et al., 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344348.
Bradbury, J.P., Dean, W.E., Anderson, R.Y., 1993. Holocene climatic and limnologic history of the north-central United States as recorded in the varved sediments of Elk Lake, Minnesota: a synthesis. In: Bradbury, J.P., Dean, W.E. (Eds.), Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geological Society of America Special Paper 276. Geological Society of America, Boulder, pp. 309328.
Breckenridge, A., 2015. The Tintah-Campbell gap and implications for glacial Lake Agassiz drainage during the Younger Dryas cold interval. Quaternary Science Reviews 117, 124134.
Clayton, L., 1983. Chronology of Lake Agassiz drainage to Lake Superior. In: Teller, J.T., Clayton, L. (Eds.), Glacial Lake Agassiz. Geological Association of Canada Special Paper 26, Geological Association of Canada, St. Johns, Newfoundland, pp. 291307.
* COHMAP, 1988. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 10431052.
Colman, S.M., Brown, E.T., Rush, R.A., 2012. Mid-Holocene drought and lake-level change at Elk Lake, Clearwater County, Minnesota: evidence from CHIRP seismic-reflection data. The Holocene 23, 460465.
Colman, S.M., Jones, G.A., Rubin, M., King, J.W., Peck, J.A., Orem, W.H., 1996. AMS radiocarbon analyses from Lake Baikal, Siberia: challenges of dating sediments from a large, oligotrophic lake. Quaternary Geochronology (Quaternary Science Reviews) 15, 669684.
Dean, W.E., Forester, R.M., Bradbury, J.P., 2002. Early Holocene change in atmospheric circulation in the Northern Great Plains: an upstream view of the 8.2 ka cold event. Quaternary Science Reviews 21, 17631775.
Elson, J.A., 1967. Geology of glacial Lake Agassiz. In: Mayer-Oakes, W.J. (Ed.), Life, Land and Water - Proceedings of the 1966 Conference on Environmental Studies of the Glacial Lake Agassiz Region. Publisher, Winnipeg, pp. 37–96.
Fenton, M.M., Moran, S.R., Teller, J.T., Clayton, L., 1983. Quaternary stratigraphy and history in the southern part of the Lake Agassiz basin. In: Teller, J.T., Clayton, L. (Eds.), Glacial Lake Agassiz. Geological Association Canada, Special Paper 26, Geological Association of Canada, St. Johns, Newfoundland, pp. 4974.
Fisher, T.G., Lepper, K., Ashworth, A.C., Hobbs, H.C., 2011. Southern outlet and basin of glacial Lake Agassiz. In: Miller, J.D., Hudak, G.J., Wittkop, C., McLaughlin, P.I. (Eds.), Field Guides to the Geology of the Mid-Continent of North America: Geological Society of America Field Guide 24. Geological Society of America, Boulder, pp. 379400.
Fisher, T.G., Yansa, C.H., Lowell, T.V., Lepper, K., Hajdas, I., Ashworth, A., 2008. The chronology, climate, and confusion of the Moorhead Phase of glacial Lake Agassiz: new results from the Ojata Beach, North Dakota, USA. Quaternary Science Reviews 27, 11241135.
Grimm, E.C., Donovan, J.J., Brown, K.J., 2011. A high-resolution record of climate variability and landscape response from Kettle Lake, northern Great Plains, North America. Quaternary Science Reviews 30, 26262650.
Hougardy, D.D., 2013. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis. Master’s thesis, University of Minnesota, Duluth.
Hu, F.S., Slawinski, D., Wright, H.E.J., Ito, E., Johnson, R.G., Kelts, K.R., McEwan, R.F., Boedigheimer, A., 1999. Abrupt changes in North American climate during early Holocene times. Nature 400, 437440.
Johnston, W.A., 1946. Glacial Lake Agassiz, with special reference to the mode of deformation of the beaches. Geological Survey of Canada Bulletin 7, 20.
Kelly, M.A., Fisher, T.G., Lowell, T.V., Barnett, P.J., Schwartz, R., Gajewski, K., 2016. 10Be ages of flood deposits west of Lake Nipigon, Ontario: evidence for eastward meltwater drainage during the early Holocene Epoch. Canadian Journal of Earth Sciences 53, 321330.
Lepper, K., Buell, A.W., Fisher, T.G., Lowell, T.V., 2013. A chronology for glacial Lake Agassiz shorelines along Upham’s namesake transect. Quaternary Research 80, 8898.
Lepper, K., Fisher, T.G., Hajdas, I., Lowell, T.V., 2007. Ages for the Big Stone Moraine and the oldest beaches of glacial Lake Agassiz: implications for deglaciation chronology. Geology 35, 667670.
Lepper, K., Gorz, K.L., Fisher, T.G., Lowell, T.V., 2011. Age determinations for glacial Lake Agassiz shorelines west of Fargo, North Dakota, USA. Canadian Journal of Earth Sciences 48, 11991207.
Lewis, C., King, J., Blasco, S., Brooks, G., Coakley, J., Croley, I.T.E., Dettman, D., et al., 2008. Dry climate disconnected the Laurentian Great Lakes. EOS, Transactions of the American Geophysical Union 89, 541542.
Lowell, T., Waterson, N., Fisher, T., Loop, H., Glover, K., Comer, G., Hajdas, I., et al., 2005. Testing the Lake Agassiz meltwater trigger for the Younger Dryas. EOS, Transactions of the American Geophysical Union 86, 365373.
Lowell, T.V., Applegate, P.J., Fisher, T.G., Lepper, K., 2013. What caused the low-water phase of glacial Lake Agassiz? Quaternary Research 80, 370382.
Mellors, T., 2010. Holocene paleohydrology from Lake of the Woods and Shoal Lake cores using ostracodes, thecamoebians, and sediment properties. Master’s thesis, University of Manitoba, Winnipeg.
Myrbo, A., Wright, H.E., 2008. The Livingstone/Bolivia SOP. Limnological Research Center Core Facility SOP Series 3.1, 1–12.
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al., 2013. Intcal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 18691887.
Schnurrenberger, D., Russell, J., Kelts, K., 2003. Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29, 141154.
Stoker, M.S., Pheasant, J.B., Josenhans, H., 1997. Seismic methods and interpretation. In: Davies, T.A., Bell, T., Cooper, A.K., Josenhans, H., Polyak, L., Solheim, A., Stoker, M.S., Stravers, J.A. (Eds.), Glaciated Continental Margins: An Atlas of Acoustic Images. Springer, Dordrecht, p. 922.
Stuiver, M., Reimer, P.J., 1986. A computer-program for radiocarbon age calibration. Radiocarbon 28, 10221030.
Teller, J.T., 1995. History and drainage of large ice-dammed lakes along the Laurentide Ice Sheet. Quaternary International 28, 8392.
Teller, J.T., 2013. Lake Agassiz during the Younger Dryas. Quaternary Research 80, 361369.
Teller, J.T., Clayton, L., 1983. Glacial Lake Agassiz. Geological Association of Canada Special Paper 26, Geological Association of Canada, St. Johns, Newfoundland, 451 p.
Teller, J.T., Leverington, D.W., 2004. Glacial Lake Agassiz: a 5000 yr history of change and its relationship to the d18O record of Greenland. Geological Society of America Bulletin 116, 729742.
Teller, J.T., Ruhland, K.M., Smol, J.P., Mellors, T.J., Paterson, A.M., 2018. Holocene history of Lake of the Woods: Ontario, Manitoba, and Minnesota. Geological Society of America Bulletin 130, 323.
Teller, J.T., Thorleifson, L.H., 1983. The Lake Agassiz–Lake Superior connection. In: Teller, J.T., Clayton, L. (Ed.), Glacial Lake Agassiz. Geological Association Canada Special Paper 26, Geological Association of Canada, St. Johns, Newfoundland, pp. 261290.
Teller, J.T., Yang, Z., Boyd, M., Buhay, W.M., McMillan, K., Kling, H.J., Telka, A.M., 2008. Postglacial sedimentary record and history of West Hawk Lake crater, Manitoba. Journal of Paleolimnology 40, 661688.
Todd, B.J., Lewis, C.F.M., Nielsen, E., Thorleifson, L.H., Bezys, R.K., Weber, W., 1998. Lake Winnipeg: geological setting and sediment seismostratigraphy. Journal of Paleolimnology 19, 215244.
Upham, W., 1895. The Glacial Lake Agassiz. United States Geological Survey Monograph 25, U.S. Geological Survey, Washington, 658 p.
Williams, J.W., Shuman, B., Bartlein, P.J., Diffenbaugh, N.S., Webb, T., 2010. Rapid, time-transgressive, and variable responses to early Holocene midcontinental drying in North America. Geology 38, 135138.
Yang, Z.R., Teller, J.T., 2005. Modeling the history of Lake of the Woods since 11,000 cal yr BP using GIS. Journal of Paleolimnology 33, 483498.

Keywords

Type Description Title
WORD
Supplementary materials

Hougardy and Colman supplementary material 1
Supplementary Table

 Word (10.3 MB)
10.3 MB

Sedimentary architecture of the southern basin of Lake of the Woods, Minnesota and its relation to Lake Agassiz history and Holocene environmental change

  • Devin D. Hougardy (a1) (a2) and Steven M. Colman (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed