Skip to main content Accessibility help

Revised Magnetostratigraphies Confirm Low Sedimentation Rates in Arctic Ocean Cores

  • William K. Witte (a1) and Dennis V. Kent (a1)


The general lack of an age-diagnostic biostratigraphy in the Neogene sediments of the abyssal Arctic Ocean has emphasized the importance of magnetostratigraphy in providing chronostratigraphic control in these sediments. Sedimentation rates interpreted from early magnetostratigraphic studies of cores taken from the T3 ice island in the western Mendeleev Plain were estimated to be on the order of 1 mm/103 yr; however, recent amino acid epimerization studies of a core from the same area have suggested sedimentation rates of almost 15 mm/103 yr. This controversy has led us to reexamine the paleomagnetism of several of these cores. Our alternating field demagnetization studies indicate that many of these cores have an intense, high coercivity overprint, acquired after the core was opened, that is adequately removed only after treatment at 20 to 70 mT. We have remeasured samples from two cores after demagnetizations up to 80 mT and can confirm the position of the Brunhes/Matuyama boundary originally identified in the cores. In addition, the Jaramillo and Olduvai subchrons are identified. Average sedimentation rates in these two cores are 2–3 mm/103 yr, similar to the original estimates based on reversal stratigraphy, as well as those determined from recent radiocarbon studies, but incompatible with the amino acid-based dates.



Hide All
1985 Aksu, A.E., Paleomagnetic stratigraphy of the CESAR cores. Jackson, H.R., Mudie, P.J., Blasco, S.M., Geological Report on CESAR: The Canadian Expedition to Study the Alpha Ridge, Arctic Ocean. Geological Society of Canada, 101-114, Paper 84-22.
1985 Aksu, A.E., Mudie, P.J., Magnetostratigraphy and palynology demonstrate at least 4 million years of Arctic Ocean sedimentation. Nature (London). 318 280-283.
1985 Berggren, W.A., Kent, D.V., Flynn, J.J., Van Couvering, J.A., Cenozoic geochronology. Geological Society of America Bulletin. 96 1407-1418.
1970 Clark, D.L., Magnetic reversals and sedimentation rates in the Arctic Ocean. Geological Society of America Bulletin. 81 3129-3134.
1986 Clark, D.L., Andree, M., Broeker, W.S., Mix, A.C., Bonai, G., Hofman, H.J., Morenzoni, E., Nessi, M., Suter, M., Woelfli, W., Arctic Ocean chronology confirmed by accelerator 14C dating. Geophysical Research Letters. 13 319-321.
1980 Clark, D.L., Whitman, R.R., Morgan, K.A., Mackey, S.D., Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean. Geological Society of America Special Paper No. 181. Geological Society of America, Boulder, CO.
1984 Clark, D.L., Vincent, J.-S., Jones, G.A., Morris, W.A., Correlation of marine and continental glacial and interglacial events, Arctic Ocean and Banks Island. Nature (London). 311 147-149.
1971 Hunkins, K., , A.W.H., Opdyke, N.D., Mathieu, G., The late Cenozoic history of the Arctic Ocean. Turekian, K.K., The Late Cenozoic Glacial Ages. Yale University, New Haven, CT, 215-237.
1975 Johnson, H.P., Kinoshita, H., Merrill, R.T., Rock magnetism and paleomagnetism of some North Pacific deep-sea sediments. Geological Society of America Bulletin. 86 412-420.
1965 Lin'kova, T.I., Some results of paleomagnetic study of Arctic Ocean floor sediments. Translated from “The Present and Past of the Geomagnetic Field,”. Directorate of Scientific Information Services. DRB Canada, 279-281.
1986 Løvlie, R., Markussen, B., Sejrup, H.P., Thiede, J., Magnetostratigraphy in three Arctic Ocean sediment cores; Arguments for geomagnetic excursions within oxygen-isotope stage 2–3. Physics of the Earth and Planetary Interiors. 43 173-184.
1986 Macko, S.A., Aksu, A.E., Amino acid epimerization in planktonic foraminifera suggests slow sedimentation rates for Alpha Ridge, Arctic Ocean. Nature (London). 322 730-732.
1972 Opdyke, N.D., Paleomagnetism of deep-sea O. Reviews of Geophysics and Space physics. 10 213-249.
1984 Sejrup, H.P., Miller, G.H., Brigham-Grette, J., Løvlie, R., Hopkins, D., Amino acid epimerization implies rapid sedimentation rates in Arctic Ocean cores. Nature (London). 310 772-775.

Revised Magnetostratigraphies Confirm Low Sedimentation Rates in Arctic Ocean Cores

  • William K. Witte (a1) and Dennis V. Kent (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed