Skip to main content Accessibility help
×
Home

Recurring middle Pleistocene outburst floods in east-central Alaska

  • Duane G. Froese (a1), Derald G. Smith (a2), John A. Westgate (a3), Thomas A. Ager (a4), Shari J. Preece (a3), Amanjit Sandhu (a3), Randolph J. Enkin (a5) and Florence Weber (a6)...

Abstract

Recurring glacial outburst floods from the Yukon-Tanana Upland are inferred from sediments exposed along the Yukon River near the mouth of Charley River in east-central Alaska. Deposits range from imbricate gravel and granules indicating flow locally extending up the Yukon valley, to more distal sediments consisting of at least 10 couplets of planar sands, granules, and climbing ripples with up-valley paleocurrent indicators overlain by massive silt. An interglacial organic silt, occurring within the sequence, indicates at least two flood events are associated with an earlier glaciation, and at least three flood events are associated with a later glaciation which postdates the organic silt. A minimum age for the floods is provided by a glass fission track age of 560,000 ± 80,000 yr on the GI tephra, which occurs 8 m above the flood beds. A maximum age of 780,000 yr for the floods is based on normal magnetic polarity of the sediments. These age constraints allow us to correlate the flood events to the early-middle Pleistocene. And further, the outburst floods indicate extensive glaciation of the Yukon-Tanana Upland during the early-middle Pleistocene, likely representing the most extensive Pleistocene glaciation of the area.

Copyright

Corresponding author

* Corresponding author. Department of Earth and Atmospheric Sciences, University of Alberta Edmonton, Alberta, T6G 2E3 Canada. Fax: +780-492-2030. E-mail address: duane.froese@ualberta.ca (D.G. Froese).

References

Hide All
Begét, J.E., (2001). Continuous late Quaternary proxy climate records from loess in Beringia. Quaternary Science Reviews 20, 499507.
Bigazzi, G., and Galbraith, R.F., (1999). Point-counting technique for fission track dating of glass shards, and its relative standard error. Quaternary Research 51, 6773.
Brabetts, T.B., Wang, B., Meade, R.H., (2000). Environmental and hydrologic overview of the Yukon River basin, Alaska and Canada, Investigations Report 99–247. United States Geological Survey, . Water Resources
Carmichael, I.S.E., (1967). The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contributions to Mineralogy and Petrology 14, 3664.
Duk-Rodkin, A., (1999). Glacial limits map of Yukon Territory. Geological Survey of Canada Open File 3694
Duk-Rodkin, A., Barendregt, R.W., Froese, D.G., Weber, F., Enkin, R., Smith, R., Zazula, G.D., Waters, P., Klassen, R., (2003). Timing and extent of Plio-Pleistocene glaciations in northwestern Canada and east-central Alaska. Quaternary Science Reviews
Froese, D.G., (2001). Eastern Beringia paleoclimate from eolian and fluvial deposits, Plio-Pleistocene middle Yukon River, central Yukon and Alaska. Unpublished Ph.D. thesis, University of Calgary,
Froese, D.G., Barendregt, R.W., Enkin, R.J., and Baker, J., (2000). Paleomagnetic evidence for multiple late Pliocene-early Pleistocene glaciations in the Klondike area, Yukon Territory. Canadian Journal of Earth Sciences 37, 863877.
Gansecki, C.A., Mahood, G.A., and McWilliams, M., (1998). New ages for the climactic eruptions at Yellowstone. single-crystal 40Ar/39Ar dating identifies contamination. Geology 26, 343346.
Gerard, R., (1984). Yukon River Freeze-up and Break-up Study. Yukon River Basin Study Hydrology Report No. 4, unpublished report Inland Waters Directorate, Environment Canada.
Gerard, R., Jasek, M., Hicks, F., (1992). Ice-jam Flood Assessment, Yukon River at Dawson. Unpublished Report Indian and Northern Affairs Canada, Whitehorse, Yukon.
Hamilton, T.D., (1994). Late Cenozoic glaciation of Alaska. Plafker, G., and Berg, H.C. The Geology of Alaska, Geological Society of America. Boulder, CO. 813844.
Kirschvink, J., (1980). The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanellin, B., (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745750.
Manley, W.F., Briner, J.P., Lubinski, D.J., Caffee, M.W., (2002). Glacial history, surface exposure ages, and paleo-ELA’s of the Yukon-Tanana Upland: preliminary Results. 32nd Annual Arctic Workshop Abstracts, Boulder, CO.
Murton, J.B., Worsley, P., and Gozdzik, J., (2000). Sand veins and wedges in cold aeolian environments. Quaternary Science Reviews 19, 899922.
Péwé, T.L., (1975). Quaternary Geology of Alaska. United States Geological Survey Professional Paper 835
Preece, S.J., Westgate, J.A., Stemper, B.A., and Pewe, T.L., (1999). Tephrochronology of late Cenozoic loess at Fairbanks, central Alaska. Geological Society of America Bulletin 111, 7190.
Preece, S.J., Westgate, J.A., Alloway, B.V., and Milner, M.W., (2000). Characterization, identity, distribution, and source of late Cenozoic tephra beds in the Klondike District of the Yukon, Canada. Canadian Journal of Earth Sciences 37, 983996.
Sandhu, A.S., Westgate, J.A., and Alloway, B.V., (1993). Optimizing the isothermal plateau fission track dating method for volcanic glass shards. Nuclear Tracks 21, 479488.
Sandhu, A.S., and Westgate, J.A., (1995). The correlation between reduction in fission-track diameter and areal track density in volcanic glass shards and its application in dating tephra beds. Earth and Planetary Science Letters 131, 34.
Schweger, C.E., White, J.M., Froese, D.G., (1999). Preglacial and interglacial pollen records from central and northern Yukon: 3 Ma of forest history. Canadian Quaternary Association Biannual Meeting, Program and Abstracts, Calgary, Alberta., p.34
Staudacher, T.H., Jessberger, E.K., Dominik, B., Kirsten, T., and Schaeffer, O.A., (1982). 40Ar-39 Ar ages of rocks and glasses from the Nördlinger Ries Crater and the temperature history of impact breccias. Journal Geophysics 51, 111.
Waitt, R.B., (1980). About forty last-glacial Lake Missoula jokuhlhaups through southern Washington. Journal of Geology 88, 653679.
Waitt, R.B., (1985). Case for periodic, colossal jokulhlaups from Pleistocene glacial Lake Missoula. Geological Society of America Bulletin 96, 12711286.
Weber, F.R., (1986). Glaciation of the Yukon-Tanana Upland. in: Hamilton, T.D., Reed, K.M., Thorson, R.M. (Editors), Glaciation in Alaska-The Geologic Record, Alaska Geological Society, pp. 7998.
Weber, F.R., Hamilton, T.D., (1984). Glacial geology of the Mt. Prindle area, Yukon-Tanana Upland, Alaska, Short Notes on Alaskan Geology 1982.: Alaska Division of Geological and Geophysical Surveys Professional Report 86, pp. 4248.
Westgate, J.A., Stemper, B.A., and Péwé, T.L., (1990). A 3 m.y. record of Pliocene-Pleistocene loess in interior Alaska. Geology 18, 858861.
Westgate, J.A., Preece, S.J., Froese, D.G., Walter, R.C., and Schweger, C.A., (2001). Tephrochronology dates two extensive glaciations in Yukon Territory. Quaternary Research 56, 288306.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed